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Statistical Analysis with Latent Variables: 
Logistics

• UCLA lectures: 20 lectures through June 14

• UCLA lab sessions:  Evening computer 
exercises once a week (TA: Karen Nylund)

• Video conferencing: off-campus sites

• Streaming video on the web from UCLA
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Web Addresses

• Course web site:
http://www.gseis.ucla.edu/faculty/muthen/

courses.htm
• Streaming video web site:

http://www.ats.ucla.edu/stat/seminars/
default.htm

• Mplus web site:
http://www.statmodel.com
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Statistical Analysis with Latent Variables
ED231E, Spring 2004 Syllabus

WEEK 1 (April 5 & 7)
• Lecture 1: Overview of course content.  A general latent 
variable modeling framework
• Lecture 2: Confirmatory factor analysis

WEEK 2 (April 12 & 14)
• Lecture 3: Multiple-group confirmatory factor analysis
• Lecture 4: Structural equation modeling

WEEK 3 (April 19 & 21)
• Lecture 5: Introductory growth modeling
• Lecture 6: Growth modeling, cont’d
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WEEK 4 (April 26 & 28)
• Lecture 7: Growth modeling, cont’d
• Lecture 8: Growth modeling, cont’d

WEEK 5 (May 3 & 5) 
• Lecture 9: Introduction to modeling with categorical 
dependent variables
• Lecture 10: Modeling with a preponderance of zeros 
(zero inflation)

WEEK 6 (May 10 & 12)
• Lecture 11: Discrete-time survival analysis
• Lecture 12: Discrete-time survival analysis
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WEEK 7 (May 17 & May 19)
• Lecture 13: Cross-sectional mixture modeling - LCA
• Lecture 14: Cross-sectional mixture modeling - LCRA 

WEEK 8 (May 24 & 26)
• Lecture 15: Longitudinal mixture modeling – LTA
• Lecture 16: Longitudinal mixture modeling - GMM

WEEK 9 (June 2) May 31 cancelled due to Memorial Day
• Lecture 17: Latent variable modeling with missing data

WEEK 10 (June 7 & 9)
• Lecture 18: Multilevel latent variable modeling
• Lecture 19: Multilevel latent variable modeling cont’d

FINAL’s WEEK (June 14)
• Lecture 20: Multilevel mixture modeling
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Statistical Analysis with Latent Variables:
An Example

• Commonalities of biometric and psychometric 
themes:
– Random effects

– Latent group (class) membership

– Missing data

– Multilevel data

– Measurement modeling
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Statistical Analysis with Latent Variables
A General Modeling Framework

Statistical Concepts Captured by 
Latent Variables

• Continuous Latent Variables
- Measurement errors
- Factors
- Random effects
- Variance components
- Missing data

• Categorical Latent Variables 
- Clusters
- Latent classes
- Finite mixtures
- Missing data

Models That Use Latent Variables

• Factor analysis models
• Structural equation models
• Growth curve models
• Multilevel models
• Missing data models

• Latent class models
• Mixture models
• Discrete-time survival models
• Missing data models

Mplus integrates the statistical concepts captured by latent variables into a general 
modeling framework that includes not only all of the models listed above, but also 

combinations and extensions of these models.
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General Latent Variable Modeling 
Framework

• Muthén, B. (2002). Beyond SEM: General latent variable 
modeling. Behaviormetrika, 29, 81-117

• Muthen & Muthen (1998-2004).  Mplus Version 3 
(www.statmodel.com)

• Mplus team: Linda Muthen, Bengt Muthen, Tihomir
Asparouhov, Thuy Nguyen, Michelle Conn

• Asparouhov & Muthen (2004).  Maximum-likelihood 
estimation in general latent variable modeling
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General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework
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Continuous Latent Variables:
Two Examples

• Muthen (1992).  Latent variable modeling in 
epidemiology.  Alcohol Health & Research World, 
16, 286-292
– Blood pressure predicting coronary heart disease

• Nurses’ Health Study (Rosner, Willet & Spiegelman, 
1989).  Nutritional study of 89,538 women.  
– Dietary fat intake questionnaire for everyone

– Dietary diary for 173 women for 4 1-week periods at 3-
month intervals



16

Measurement Error in a Covariate
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Measurement Error in a Covariate
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Continuous Latent Variables

• Factor analysis, structural equation modeling 
– Constructs measured with multiple indicators

• Growth modeling
– Growth factors, random effects: random intercepts 

and random slopes representing individual 
differences of development over time (unobserved 
heterogeneity)

• Survival analysis
– Frailties
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Growth Modeling of LSAY Math 
Achievement with Random Slopes 

for Time-Varying Covariates

• Data source: LSAY, n = 2,271 students in public schools
– Clustering of students within schools ignored in this analysis

• Outcome: grade 7, 8, 9, 10 math achievement 

• Time-invariant covariates: female, mother’s education, 
home resources

• Time-varying covariates: highest math course taken 
during each grade (0 = no course; 1 = low, basic; 2 = 
average; 3 = high; 4 = pre-algebra; 5 = algebra I; 6 = 
geometry; 7 = algebra II, 8 = pre-calculus; 9 = calculus)
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Onset (Survival) Followed by Growth
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Categorical Latent Variables

• Mixture regression

• Latent class analysis

• Latent transition analysis
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Latent Class Analysis
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Combinations of 
Continuous and Categorical Latent Variables

• Mixture CFA, SEM

• Growth mixture modeling

• Second-order latent class analysis (twin modeling)

• Longitudinal Complier-Average Causal Effect 
(CACE) modeling in randomized preventive 
interventions

• Non-ignorable missing data modeling
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Factor Mixture - Non-Parametric Factor Modeling
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Growth Mixture Modeling

• Muthén, B. & Shedden, K. (1999). Finite mixture 
modeling with mixture outcomes using the EM 
algorithm. Biometrics, 55, 463-469. 

• Muthén, B., Brown, C.H., Masyn, K., Jo, B., Khoo, 
S.T., Yang, C.C., Wang, C.P., Kellam, S., Carlin, J., 
& Liao, J. (2002). General growth mixture modeling 
for randomized preventive interventions. 
Biostatistics, 3, 459-475. 
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Growth Mixture Modeling: 
LSAY Math Achievement Trajectory Classes 

and the Prediction of High School Dropout
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Kindergarten Growth
Phonemic Awareness

Grade 1 and Grade 2 Growth
Word Recognition
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A Clinical Trial
of Depression Medication
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A Clinical Trial
of Depression Medication

Placebo Non-Responders, 55% Placebo Responders, 45%

 

H
am

ilt
on

 D
ep

re
ss

io
n 

R
at

in
g 

S
ca

le

0
5

10
15

20
25

30

 

 

Bas
eli

ne

W
as

h-
in

48
 h

ou
rs

1 
wee

k

2 
wee

ks

4 
wee

ks

8 
wee

ks

0

5

10

15

20

25

30

 
 

0
5

1
0

1
5

2
0

2
5

3
0

 
 

Bas
eli

ne

W
as

h-
in

48
 h

ou
rs

1 
wee

k

2 
wee

ks

4 
wee

ks

8 
wee

ks

0

5

10

15

20

25

30

39

A Clinical Trial
on Depression Medication

Placebo Non-Responders, 21%
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Twin Modeling
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Longitudinal CACE, 
Non-Ignorable Missing Data

• Yau & Little (2001). Inference for the complier-average 
causal effect from longitudinal data subject to noncompliance 
and missing data, with application to a job training assessment 
for the unemployed. Journal of the American Statistical 
Association, 96, 1232-1244.

• Frangakis & Rubin (1999). Addressing complications of 
intention-to-treat analysis in the combined presence of all-or-
none treatment-noncompliance and subsequent missing 
outcomes. Biometrika, 86, 365-379.

• Muthén, Jo, & Brown (2003). Comment on the Barnard, 
Frangakis, Hill & Rubin article, Principal stratification 
approach to broken randomized experiments: A case study of 
school choice vouchers in New York City. Journal of the 
American Statistical Association, 98, 311-314. 
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Growth Mixture Modeling with Non-Ignorable
Missingness as a Function of Latent Variables
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Growth Mixture Modeling with Non-Ignorable
Missingness as a Function of Latent Variables
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Growth Mixture Modeling with Non-Ignorable
Missingness as a Function of Latent Variables
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Multilevel Modeling with 
Continuous and Categorical Latent Variables

• Multilevel regression

• Multilevel CFA, SEM

• Multilevel growth modeling

• Multilevel discrete-time survival analysis

• Multilevel regression mixture analysis (CACE)

• Multilevel latent class analysis

• Multilevel growth mixture modeling
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2-Level Regression 
of NELS Math Achievement

• Data source: NELS, n = 14,217 students in 913 schools

• Outcome: math achievement in grade 12 

• Individual-level covariates: female, stud_ses

• School-level covariates: per_adva (percent teachers with 
an MA or higher), school type (public, private, catholic), 
family mean ses
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Two-Level CACE Mixture Modeling
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Two-Level Latent Class Analysis
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References

• See course and Mplus web sites 


