Zeros

Modeling with a preponderance of zeros Frauke Kreuter, UCLA Statistics

Data

- Characteristics
 - Large number of zeros
 - Skewed
- Examples
 - Convictions
 - Drinking
 - Drug abuse

"Classic" examples

- Manufacturing applications
- Economics
- Medicine
- Public health
- Environmental science
- Education

Distributions

Skewed

Log transformed

Modeling strategies

- Continuous
 - Censored normal
 - Two-part model
 - Mixture models
 - Zero inflated models
 - Two-class model

- Counts
 - Two-part modeling
 - Zero inflated models
 - Mixture models
 - Zero inflated models
 - Two-class model

Zeros in longitudinal data

Onset

- Zero until onset
- Once behavior shown we want to model counts
- "Offset"
 - Zero after a certain point
 - E.g. abstinence, "jail time"

Zeros in longitudinal data

Criminal careers

- In and out of zero (random zeros);
 - Example: Solid line Respondent 1
- Measurement errors
- Zero throughout (partly structural zeros)
 - Here 60% 0 age10-40

Separate process for zeros

Example – Olsen & Schafer (2001)

- Data n=1961
 - Panel of Adolescent Prevention Trial
 - Middle school and high school students
 - Grade 7 trough 11
- Variables
 - Self reported recent alcohol use
 - Parental monitoring, rebelliousness, gender

- Model: two-parts
 - U-part
 - Logit
 - use, no-use
 - Y-part
 - Log-normal
 - y>0

Two-part model

$$u_{it} = \begin{cases} 1 & if \quad y_{it} > 0 \\ 0 & if \quad y_{it} = 0 \end{cases}$$

$$y_{it} = \begin{cases} m_{it} & if \quad y_{it} > 0 \\ & if \quad y_{it} = 0 \end{cases}$$

$$m_{it} = \eta_{0i} + \eta_{1i} a_{it} + \varepsilon_{it}$$

Raw data

	Grade	Grade	Grade	Grade	Grade
i	7	8	9	10	11
1	0	0	0	0	0
2	0	0	1.7	2.3	3
3	0	1	0	1	1.7

U-part

	Grade	Grade	Grade	Grade	Grade
i	7	8	9	10	11
1	0	0	0	0	0
2	0	0	1	1	1
3	0	1	0	1	1

Y-part

i	Grade 7	Grade 8	Grade 9	Grade 10	Grade 11
1		•	•	•	
2	•	•	1.7	2.3	3
3	•	1	•	1	1.7

Two part modeling - Mplus

Example – Olsen & Schafer (2001)

U-part

- In grade 7 unsupervised girls higher odds for drinking, effect diminishes over time
- Low monitoring in grade
 7 no effect for boys, but unsupervised boys higher odds in grade 11

Y-part

- Reduced monitoring increase the amount of alcohol consumption in grade 7
- For girls effect increases over time, for boys it vanishes by grade 11

Example – Albert & Shih (2003)

Separate sources for zeros

Modeling count variables (t=1)

- Models used
 - Poisson
 - With parameter λ
 - Use GLM to model log(λ)
 - Negative binomial

- Problem
 - Zero inflation / overdispersion
 - Model assumptions don't hold

Zero Inflated Poisson (ZIP)

- Zero outcome can arise from one of two sources, one where outcome is always zero, another where a poisson process is at work (Lambert 1992)
- The poisson process can produce zero or another outcome
- Covariates can predict group membership, and outcome of the poisson process

The model

$$Pr(y_{it} = 0) = Pr(group1) + Pr(y_{it} = 0 \mid group2) * Pr(group2)$$

$$Pr(y_{it} = 1) = Pr(y_{it} = 1 | group 2) * Pr(group 2)$$

$$\Pr(group1) = \frac{e^L}{1 + e^L}$$

Logistic regression model

$$\Pr(Y = y) = \frac{e^{-\lambda} \lambda^{y}}{y!} \text{ Poisson model}$$

Two class models

y#1 is a two class variable

y#1 = 2: "convicted" Poisson distribution

Mplus example - ZIP

```
MODEL RESULTS
!Input file
                                              Estimates
VARTABLE:
                                  TOTAL
                                           ON
  NAMES ARE ...
                                                  0.453
                                     \times 1
  missing = .
                                     x^2
                                                  0.434
  USEV
                                  TOTAL#1 ON
            = total (i);
  COUNT
                                                 -0.260
                                     \times 1
                                                 -0.952
                                     \times 2
MODEL:
                                  Intercepts
  total
             ON x1 x2 ;
                                                  0.816
                                     TOTAL#1
  total#1 ON x1 x2;
                                                  1.031
                                     TOTAL
```

Interpreting the zip part

Odds of being in zero class: $e^{0.816} = 2.261$

Probability to be in zero class:

$$odds = \frac{\Pr(zero _class)}{1 - \Pr(zero _class)} = 2.26$$

$$Pr(zero _class) = \frac{2.26}{1 + 2.261} = .693$$

Interpreting the count part

The average rate of conviction (average number of crimes) given a person is in the non-zero class, and both covariates are equal to zero:

$$e^{1.031} = 2.804$$

The average rate of conviction for boys with $x_1=0$ and $x_2=0$

$$= 2.804*(1-Pr(zero_class))$$

$$= 2.804*1-.693$$

$$= .861$$

Zero counts in longitudinal data

- Single-class models
 - Censored, Two-part modeling
- Two-class models
 - Censored inflated, ZIP, Mover-stayer
- Multi-class models
 - LCGA with zip, GMM with zero class, combination of the above

Multi-class model

Example – Roeder et al.

- "Cambridge study" (Farrington/West)
- 411 boys 403 in the analysis
- Age 10 to age 40 (!)
- Number of convictions each year
 - Total 0 up to 7 in a given year
 - Analysis mostly done with 2 year intervals
- Daring and rearing as covariates

Raw data

i	Age 10	Age 12	Age 14	Age 16	Age 18
1	0	0	1	1	0
2	0	0	0	2	1
3	0	0	0	0	0

Mplus for (zero inflated) count

Mplus for (zero inflated) count

```
HO Value -1519.762
Free Param. 4
Bayesian 3063.530
est. t
I -4.265 -18.967
S 0.488 7.781
O -0.056 -8.023
```

H0 Value	-1496.937	
Free Para	7	
Bayesian	(BIC)	3035.878
	est.	t
I	- 3.231	-10.461
S	0.130	1.272
Q	-0.027	-2.802
II	@ O	
SI	-1. 776	-3.765
QI	0.132	4.866
CAGE10#1	1.532	2.861

GMM

Predicted/ observed average conviction rate

GMM-ZIP

Predicted/ observed average convicition rate

Outlook Latent class growth model with 4 classes

References (selection)

- Land, K.C., McCall, P.L., & Nagin, D.S. (1996): A Comparison of Poisson, Negative Binomial, and Semiparametric Mixed Poisson Regression Models. Sociological Methods & Research, 24, 387-442.
- Olsen, M.K. & Schafer, J.L. (2001): A Two-Part Random-Effects Model for Semicontinuous Longitudinal Data. Journal of the American Statistical Association, 96, 730-745.
- Roeder, K., Lynch, K.G. & Nagin, D.S. (1999): Modeling uncertainty in latent class membership: A case study in criminology. Journal of the American Statistical Association, 94, 766-776.