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Exploratory latent structure analysis using both
identifiable and unidentifiable models
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SUMMARY

This paper considers a wide class of latent structure models. These models can serve as
possible explanations of the observed relationships among a set of m manifest polytomous
variables. The class of models considered here includes both models in which the parameters
are identifiable and also models in which the parameters are not. For each of the models
considered here, a relatively simple method is presented for calculating the maximum likeli-
hood estimate of the frequencies in the m-way contingency table expected under the
model, and for determining whether the parameters in the estimated model are identifiable.
In addition, methods are presented for testing whether the model fits the observed data,
and for replacing unidentifiable models that fit by identifiable models that fit. Some illus-
trative applications to data are also included.

Some key words: Contingency tables; Latent structure; Log linear models; Maximum likelihood
estimation ; Tests of fit.

1. INTRODUCTION

This paper deals with the relationships among m polytomous variables, i.e. with the
analysis of an m-way contingency table. These m variables are manifest variables in that,
for each observed individual in a sample, his class with respect to each of the m variables is
observed. We also consider here polytomous variables that are latent in that an individ-
ual’s class with respect to these variables is not observed. The classes of a latent variable
will be called latent classes.

Consider first a 4-way contingency table which cross-classifies a sample of » individuals
with respect to four manifest polytomous variables 4, B, C and D. If there is, say, some
latent dichotomous variable X, so that each of the % individuals is in one of the two latent
classes with respect to this variable, and within the #th latent class the manifest variables
(4, B, 0, D) are mutually independent, then this two-class latent structure would serve as
a simple explanation of the observed relationships among the variables in the 4-way con-
tingency table for the » individuals. There is a direct generalization when the latent variable
has T classes. We shall present some relatively simple methods for determining whether
the observed relationships among the variables in the m-way contingency table can be
explained by a 7T-class structure, or by various modifications and extensions of this latent
structure.

To illustrate the methods we analyze Table 1, a 24 contingency table presented earlier by
Stouffer & Toby (1951, 1962, 1963), which cross-classifies 216 respondents with respect to
whether they tend towards universalistic values (+) or particularistic values (—) when
confronted by each of four different situations of role conflict. The letters 4, B, C and D in
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Table 1. Observed cross-classification of 216 respondents with respect to whether they tend
toward wniversalistic (+) or particularistic (—) values in four situations of role conflict
4, B, C, D)

Observed Observed
frequency y:| frequency

42 -
23 -
6 —
25 -
6 —
24 —
7 —
38 - -

I+ +++
I ++ Q
I ++++
I ++ aQ

|
I+ + |
I+ + 1

tH++++++
I+l +1+1+ U
I+ 1 +1+1+ &
O NN

Table 1 denote the dichotomous responses when confronted by the four different situations.
In addition, a second illustrative example in Table 4 below will also be discussed briefly.
Our analysis of these data leads to conclusions that are different from those presented earlier.

2. THE LATENT CLASS MODEL UNRESTRICTED

Suppose that the manifest polytomous variables 4, B, C and D consist of 1, J, K and L
classes, respectively. Let ,;;; denote the probability that an individual will be at level
(¢,, k, 1) with respect to the joint variable (4, B,C,D) (¢ = 1,...,I;j = 1,...,J;k =1, ..., K;
l=1,...,L). Suppose that there is a latent polytomous variable X, consisting of 7' classes,
that can explain the relationships among the manifest variables (4, B, C, D). This means
that 775, can be expressed as follows:

ABCDX
wkl Z ﬂz;klt ’ (1)
where e
ABCDX _ pnX nAX nBX 1 OX /DX
it nf ng X n X niE mg (2)

denotes the probability that an individual will be atlevel (, j, k, [, ) with respect to the joint
variable (4, B, 0, D, X). Here ¥ denotes the probability that an individual will be at level ¢
with respect to variable X; also 771X denotes the conditional probability that an individual
will be atlevel ¢ with respect to Varlable A, given that he is at level ¢ with respect to variable
X, and finally 755, #ZX and 7% denote similar conditional probabilities. Formula (1)
states that the individuals can be classified into 7' mutually exclusive and exhaustive latent
classes, and formula (2) states that within the tth latent class the manifest variables (4, B,
C, D) are mutually independent (¢t = 1,...,7T). The meaning of the latent polytomous
variable X will be clarified further when particular examples are considered later.

The following elementary formulae, (3)—(8), are required to obtain the subsequent results:

z X L D4 J BX X X L DX
Saf=1, Ywapr =1, X e = 1, Ymg =1, X mgs =1, (3)
=1 t=1 j=1 k=1 =1
X ABCDX
T = 2 Mg > (4)
i35k, 1

A
7Tt zt 2 ﬂzyﬁ?DX (5)
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Formulae similar to (5) can be obtained for #¥ multiplied by 75%, 7gX and #2%. In

addition, we obtain

BCDX B
”ﬁm X = ”ﬁkl?DX/”ﬁkb (6)

where 7ABIPX denotes the conditional probability that an individual is in latent class ¢,
given that he was at level (3,7, k, 1) with respect to the joint variable (4, B, C, D). Using (6),
we can rewrite (4) and (5) as

ABCDX
mE = X TR (7)
24, k,
miX = (j %l"wlcz”ﬁﬁg DX)[m. (8)
3 vy

Formulae similar to (8) can be obtained for 75X, 7gX and nX. Without loss of generality,
we can assume that 75 > 0; we also assume that 7,5, > 0.
Let circumflexes denote the maximum likelihood estimates of the corresponding para-

meters in the latent-class model. From (1) and (2), we obtain

T
A ~ABCDX :
ikl —tzl ke s (9)
where
AABODX _ AX AAX ABX ACX ADX.
. TR DX = AF m4X AR mg MR~ (10)
and from (6) we obtain
AABCDX _ AABCDX |}
Mg 0 = Migtas i (11)

If p; , denotes the observed proportion of individuals at level (3, 5, £, I) with respect to the
joint variable (4, B, C, D), standard methods prove that the maximum likelihood estimates
satisfy the following system of equations:

~ ~ABODX
T = X Pijaligag (12)
YA
A A4 < AX
X = ('glpijklﬂiiﬁg D) [, (13a)
j’ ¢
A ~ABODX)\ |4
TR = (2 DT >R, (13b)
- ik,
a AABCDX\|AX
T = (izlpijkl s ) (13c¢)
sJs
AP A X A
TR = (2 ps il I (134)
%9,

Compare (12) and (13a) with (7) and (8); recall that 722X in (12) and (13a)~(13d) was
defined by (11), (10) and (9).

Let 7 denote the vector of parameters (7, 74%, 7EX, ngX, nX) in thelatent-class model,
and let 77 denote the corresponding maximum likelihood estimate of the vector. To calculate
#, we apply the following iterative procedure. Start with an initial trial value for 7,
say m(0) = {n(0), A% (0), 7EX(0), 7% (0), 7R % (0)}, which we discuss later. Then use formula
(10) to obtain a trial value for 735°PX, replacing the terms on the right-hand side of (10)
by the corresponding components in 7(0). We then use (9) to obtain a trial value for 7, ;,,
replacing the term on the right-hand side of (9) by the corresponding trial value; and we use
(11) to obtain a trial value for 745X, replacing the terms on the right-hand side of (11) by
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the corresponding trial values. Similarly, we use formula (12) to obtain a new trial value
for 7%, and (13a) to (13d) to obtain new trial values for 74%, 75X, 73X and 7PX. Having
thus obtained a new trial value for the vector 77, we repeat the procedure starting with the
new trial value using in turn formulae (10), (9), (11), (12) and (13a)—(13d) to obtain the next
trial value for 7. In this iterative procedure a latent class is deleted if the corresponding
estimate tends to zero. The procedure will converge to a solution to the system of
equations and to a corresponding likelihood. For some related but different results, see
Haberman (1974).

From (12) and (13a)—(13d), we find that the components of 77 are such that

T I J K L
Saf=1;, Yai¥=1, Iaf¥=1, Yaf¥=1 Ia¥=1 (14)
t=1 i=1 i=1 k=1 =1
Compare (14) with (3). Because of this, we can simplify the iterative procedure described
above by estimating only 7'— 1 of the ¥, say #n¥ for t = 1,...,T—1, using (12) and by
estimating only I — 1 of the 7%, say, n4X fors = 1, ...,] —1, using (13a), etc. The estimate
of 7% can be obtained using (14); similarly for the estimate of 74X, etec.

The iterative procedure described above can be used when the manifest variables
(4, B, C, D) are polytomous as well as in the special case when they are dichotomous. The
earlier literature on maximum likelihood estimation in the latent class model (McHugh,
1956, 1958) dealt only with the special dichotomous case. In this case our procedure is
easier to apply than are the formulae of McHugh.

We have concentrated on the case of four manifest variables (4, B, C, D). All the methods
and results can be extended when there are m manifest variables (m = 3, 4, ...).

For the m-way contingency table, when the m manifest variables are dichotomous and
T < $(m+1), a determinantal method is available for calculating consistent estimates of
the vector 7 of parameters in the latent class model under certain conditions; see Anderson
(1954) and Lazarsfeld & Henry (1968, chapter 4).

The estimates so obtained are not asymptotically efficient (Anderson, 1959), except in
the special case where m = 3 and T' = 2. Even when the conditions specified in the earlier
literature are satisfied, the determinantal method can yield estimates of 7 that are not
permissible, e.g. where one or more of the components in the estimate of 7 lie outside the
interval [0, 1]. When the components in this estimate all lie within the interval (0, 1), this
estimate can be used as the initial trial value for the maximum likelihood estimate 7 in
the iterative procedure described earlier in this section.

When the components in the initial trial value for 7 all lie within the interval (0, 1),
the above iterative procedure will converge and yield a solution to (12) and (13a)-(13d).
This solution will be either the maximum likelihood estimate 7, or some other solution to
this system of equations, e.g. a terminal maximum, in which one or more of the components
are 0 or 1. By trying various initial trial values for 77, we can compare the solutions obtained
using the iterative procedure to see which solution minimizes the chi-squared statistic based

upon the likelihood ratio R
X2=2 % lfijkllog (figal Fsjna)s (15)
where T R
Fisa =P Fijia = 70 (16)
with 77, obtained from (9). The solution obtained which minimizes (15) yields the maxi-
mum likelihood estimate 7. For related comments, see Goodman (1974).
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The procedure deseribed above calculated 7, from the vector #, using (10) and (9).
Having thus obtained 7;;;;, we consider next whether the vector # is uniquely determined
by the 7 ;4. If 7 is uniquely determined, we say it is identifiable. If 7 is uniquely determined
by the 7, within some neighbourhood of 7, we say it is locally identifiable. We now give
a useful sufficient condition for local identifiability.

In the earlier literature, identifiability, or local identifiability, was defined with respect to
the vector 7 of parameters in the model for the 7, rather than with respect to the corre-
sponding maximum likelihood estimate 7 determined by the ;;;;. The method which we
shall now present can be used to study whether 7 is locally identifiable and/or whether 7
is locally identifiable. The former problem will be discussed first.

On combining (1) and (2), our model is

T
- X 4AX BX . CX . DX
ﬂijkl_tzl Ty T~ Mg Mg Mg s (17)

Formula (17) describes a set of IJ KL functions that transform the parameters

X AX .BX ,0X DX
(e, ™ s T g > i)

into the ;;;;. Because of (3), we need consider only 7' — 1 of the 7, say,
l (t=1,..,T—1),

only I — 1 of the 74X, say, mAXfori = 1, ...,I — 1, etc. The value of 7% can be obtained using
(3); similarly for the value of 7%, etc. Thus we need consider only

T-1+(I+J+K+L—-4)T=I+J+K+L-3)T -1
parameters. We shall call this set of parameters a ‘basic set’. Similarly, since

. 2 My =1, (18)
YA
we need consider only IJKL— 1 of the 7, say, m;;, for (4,5,%,1) &+ (I,J, K, L). We shall
also call this set of 7,;;; a basic set. When

IJKL < (I+J+K+L-3)T, (19)

the number of parameters in the basic set exceeds the corresponding number of 7,
and so the parameters will not be identifiable in this case.

Next suppose that (19) is not satisfied, i.e. that the number of parameters in the basic
set does not exceed the corresponding number of 77, ;. In this case, for each 7, ;; in the basic
set, we calculate the derivative of the function 7,;;, described by (17) with respect to the
parameters in the basic set, thus obtaining a matrix consisting of IJKL—1 rows and
(I +J + K+ L—3)T —1 columns. For example, in the column pertaining to the derivative

with respect to ¥,

o, - ~
ikl _ . AX, BX ~0X DX __ 4AX,BX 0X _ DX

X =Ty Mg~ Mg Mg — Mg Wy Mg Mg (20)
t
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for¢ = 1,...,T — 1; in the column pertaining to the derivative with respect to 74X,

X_ BX,O0X,DX (i _
mEaBXnlEalX (i=3s),
OT i1,
Jkl _ X BX .CX _.DX y
omdX —nf gt m mgx (¢ = 1), (21)
0 otherwise,

for s=1,...,I1—1, etc. The second term on the right-hand side of (20), and the term on
the second line on the right-hand side of (21), arise since
- I-1
nf =1- T nf, mf¥=1- % nf¥;

=1 i=1
see (3). By direct extension of a standard result about Jacobians, the parameters in the
model will be locally identifiable if the rank of the matrix described above is equal to the
number of columns, i.e. the number of parameters in the basic set. For a corresponding
result in the special case where the variables are dichotomous, see McHugh (1956).

By replacing the 7’s by the corresponding 7’s in the preceding two paragraphs, the results
can be applied to determine whether the maximum likelihood estimates of the parameters
in the model are locally identifiable.

To test the null hypothesis that the T'-class latent structure (17) is true, we can use the
chi-squared statistic (15). Under this null hypothesis, the asymptotic distribution of the
statistic (15) will be chi-squared with degrees of freedom

IJKL—1—{I+J+K+L-3)T—1} = IJKL—(I+J+K+L-3)T, (22)

when the parameters in the latent structure are locally identifiable. When the parameters
in the structure are not locally identifiable, various kinds of restrictions can be imposed
upon the parameters in order to make them so. This would lead us to the analysis of restricted
latent structures, rather than the unrestricted latent class model considered in the present
section. We shall discuss various kinds of restricted structures later (§§4-6), but first we
illustrate the application of the above techniques.

3. AN EXAMPLE

Table 1 is concerned with whether respondents tend toward universalistic or particular-
istic values. Stouffer & Toby (1951, 1962, 1963) analyzed these data using a particular
5-class restricted latent structure, and they concluded that the underlying latent variable
pertaining to universalistic versus particularistic values could be described by the 5 latent
classes. In contrast to this conclusion, we shall show here that a much simpler model is
congruent with these data.

Let H, denote the 2-class latent structure described in the preceding section, i.e. 7' = 2.
To test the hypothesis that H, is true, we use the methods in that section to calculate the
chi-squared statistic (15). It is 2-720 with 6 degrees of freedom. Thus this simple model fits
the data very well indeed.

Table 2 gives both the likelihood ratio chi-squared (15) and the corresponding goodness-
of-fit chi-squared for H, and for some other latent structure applied to Table 1; Table 3
gives the corresponding estimates obtained with the procedure introduced in §2. Having
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Table 2. Chi-squared values for some latent structures applied to Table 1

Number of Degrees Likelihood ratio = Goodness-of-fit
Models latent classes  of freedom chi-squared chi-squared

H, 2 6 2:720 2-720
H,, H;, H; 3 2 0-387 0-423

3 4 0 0-000 0-000
H,, H,, Hy, H, HY 3 5 0-921 0-895
H 3 9 2-281 2-282
H, 4 4 0-870 0-852
H, 2 8 2-886 2-838
Hg 2 10 4-390 4-339
H, 3 10 2-391 2-421

obtained such a good fit with H;, we could stop with this model; but for purposes of com-
parison and illustration, we shall later consider the other models in Tables 2 and 3.

Model H, for Table 1 states that (@) there is a single latent dichotomous variable X
pertaining to ‘universalistic versus particularistic latent values’, and (b) this latent vari-
able alone can explain the observed relationships among all four manifest variables (4, B, C,
D) in the table. From the estimated parameters for H, in Table 3, we see that, with respect
to the joint manifest variable (4, B, C, D), the ‘modal levels’ are (1, 1, 1, 1) and (1, 2, 2, 2),
for latent classes 1 and 2, respectively; and the latter latent class is modal, since 735 = 0-721.
Thus, individuals in the modal latent class tend to be at manifest level 2, i.e. ‘intrinsically’
particularistic, except for the level on variable 4, and individuals in the nonmodal latent
class tend to be at manifest level 1, i.e. ‘intrinsically’ universalistic. The 7 for H, in Table 3
estimate the distribution of the latent variable X ; and the other estimated parameters for
this model can be used to estimate the effect of variable X upon each manifest variable
4, B, 0, D).

The method used in the preceding paragraph to describe H, and its latent variable X can
be applied in a similar way to the other models in Table 3; for some of these latent structures
further insight into their meaning will be obtained by other means as well. We shall consider
these latent structures here, in part in order to illustrate various problems that arise when
determining whether the parameters in the model are identifiable, when moving from the
simple 2-class model H; to the T-class models (7' = 3,4, ...), when moving from unrestricted
to restricted latent structures, ete.

With respect to the estimated parameters in the 2-class model H;, which are maximum
likelihood estimates, the fact that they are locally identifiable can be established using either
the method presented in the preceding section or a different determinantal method pre-
sented in the earlier literature. The latter method provides sufficient conditions for identi-
fiability in the special case where the 7 manifest variables are dichotomousand 7' < § (m +1)
(see, e.g. Anderson, 1954), and these conditions were extended by Madansky (1960) to the
dichotomous case where T' < 2¥m-1, However, when considering the 3-class model H, in
Table 3, the determinantal method in the earlier literature is not applicable, since in this
case T = 3 > 2}, Fortunately, we can apply to H, the method presented in the preceding
section for studying local identifiability, and we find that H, has 14 parameters in its basic
set, but the 15 x 14 matrix described there has rank 13. This model is not identifiable;
models H), and Hj in Table 3 will produce the same estimated expected values 75, as
does H,. Models H,, H} and H} produce the same 7,;;, but they provide different solutions
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Table 3. Estimated parameters in some latent structures applied to Table 1

Model
H,

H,

"
H 4

iv
H4

Latent
class ¢

WM - N N PWhE WNE WNFR W W W WoE W= W= W WD D=

A
X
ﬂt

0-279
0-721

0-208
0-630
0-162

0-220
0-672
0-108

0-193
0-581
0-226

0-226
0-638
0-102
0-035

0-257
0-627
0-117

0-257
0-137
0-607

0-257
0-103
0-641

0-257
0-091
0-652

0-257
0-067
0-676

0-175
0-050
0-775

0-253
0-096
0-009
0-641

0-279
0-721

0-231
0-769

0-175
0-050
0-775

max
0-993
0.714

0-997
0-824
0-404

0-995
0-806
0-288

0-998
0-844
0-481

0-999
0-855
0-189
0-049

0-988
0-812
0-252

0-988
0-988
0-664

0-988
0-988
0-681

0-988
1-000
0-685

0-988
0-000
0-796

1-000
0-000
0-796

0-991
0-991
0-684
0-684

0-993
0-714

0-986
0-732

1-000
0-000
0-796

ABX
Ty

0-940
0-330

0-973
0-459
0-052

0-968
0-428
0-000

0-980
0-499
0-095

0-965
0-412
0-104
0-260

0-940
0-401
0-062

0-940
0-769
0-253

0-940
0-940
0-253

0-940
1-000
0-257

0-940
0-000
0-383

1-000
0-000
0-420

0-953
0-953
0-256
0-256

0-933
0-342

0-986
0-364

1-000
0-000
0-429

AEX
Ty

0-927
0-354

0-986
0-425
0-256

0-976
0-407
0-241

1-000
0-448
0-269

0-970
0-398
0-148
0-751

0-948
0-364
0-364

0-948
0-364
0-364

0-948
0-364
0-364

0-948
0-364
0-364

0-948
0-364
0-364

1-000
0-000
0-437

0-945
0-361
0-945
0-361

0-933
0-342

0-986
0-364

1-000
0-000
0-429

A
-DX
Ty

0-769
0-132

0-884
0-183
0-067

0-863
0-170
0-057

0-913
0-202
0-075

0-852
0-164
0-034
0-291

0-814
0-136
0-136

0-814
0-136
0-136

0-814
0-136
0-136

0-814
0-136
0-136

0-814
0-136
0-136

1-000
0-000
0-175

0-811
0-132
0-811
0-132

0-771
0-132
0-841
0-159

1-000
0-000
0-175
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to the maximum likelihood equations; H; and Hj provide extreme solutions, whereas H,
doesnot. Indeed, there is a one-dimensional continuum of models ranging between Hj and Hy
that will yield the same 7,;;. As 7 decreases from its value in Hj to its value in Hj, 75
decreases accordingly and all other estimated parameters increase. Note that 75X = 0 in
Hj;, and 78X = 1 in H}. If there is some need to select from among the various models that
yield the same 7, ;, this can be done by the introduction of an a priori assumption of the
kind considered in the following three paragraphs.

If we had assumed a priori that 75X = 0, and had estimated the other parameters in
the model from the data, then there would have been 13, rather than 14, parameters in the
basic set of estimated parameters, and they would have been identifiable. In the iterative
procedure introduced in § 2, if the initial trial value for 73X had been taken as zero, all subse-
quent values of 75X obtained by (13b) would also be zero. The iterative procedure can be
applied directly in this case.

The remarks in the preceding paragraph can be applied also in the case where we assume
a priori that 7GX = 1, and then estimate the other parameters in the model from the data.
More generally, if we assume a priori that a given set of conditional probabilities, e.g.
ﬂjgsx forj=1,...,J,orn$X fork = 1,..., K,is equal to a specified set of zeros and ones which
satisfy the corresponding condition (3), then the iterative procedure described herein can
be applied directly in this case, simply by taking the assumed values as the initial trial
values for the corresponding estimated parameters in the iterative procedure. Still more
generally, if a given set of conditional probabilities, e.g. 74X for ¢ = 1, ..., 1, is assumed
known, where the assumed values are not necessarily zeros and ones but they must satisfy
the corresponding condition (3), then the iterative procedure would be modified by replacing
the corresponding iterative calculation, e.g. (13a) for 74%, by the assumed values of the
corresponding parameters at each iteration.

In the analysis of Table 1 using a 3-class latent structure, if we introduce a single restric-
tion of the kind described above, namely that a given conditional probability is equal to a
specified number in the closed interval defined by the corresponding values in H;, and Hj,
say that 75X = 0 or that 7¢X = 1, then the chi-squared statistic (15) yields a value of 0-387
with 2 degrees of freedom as noted in Table 2. The number of degrees of freedom is equal to
the number of 77, ;, in the basic set minus the corresponding number of estimated parameters
in this case.

We have now discussed the case where 7' = 2 and 7' = 3. With respect to the case where
T = 4, condition (19) is satisfied, since 16 < 5 x 4, and so the parameters in the 4-class model
will not be identifiable. When the m manifest variables are dichotomous, condition (19)
can be replaced by the condition that 2™ < (m+ 1) T'. Model H; in Table 3 is an example
of such a model. In the analysis of Table 1, model Hj yields a chi-squared value of zero, as
noted in Table 2. Since H; was a ‘super-saturated’ model, i.e. the number of parameters
in the basic set for this model exceeds the corresponding number of 7;;;,, the chi-squared
statistic will have zero degrees of freedom.

From Table 3 we see that 7y in H; is relatively small, as 7 = 0-035. Since H, fits the data
perfectly, it would be desirable to consider also 3-class models obtained by the deletion
of latent class 4 from H,. In the estimation procedure of §2 for 3-class models, as the com-
ponents in the initial trial value for 7 we can use the estimated parameters in H, modified
by the deletion of its fourth latent class, or by the absorption of this latent class in one or
more of the other 3 classes. When this is done, we are led to 3-class models of the kind
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described earlier in this section, e.g. H,, and also to 3-class models that provide terminal
maxima rather than a global maximum.

Initial trial values in our estimation procedure for a 3-class model can be obtained either
by (@) modifying the estimated parameters in 4-class models as indicated in the preceding
paragraph, (b) modifying the estimated parameters in 2-class models, e.g. by inserting a
third latent class in model H,, (c) trial and error, or (d) using as initial values the estimated
parameters in 3-class restricted latent structures of the kind discussed in §5, and removing
the restrictions from the structures. The above remarks about initial values for 3-class
models can be directly extended to 7'-class models for 7' > 3.

We have not yet discussed models H, to H, in Tables 2 and 3. These models will be dis-
cussed in §5 as particular examples of the kinds of restricted latent structures considered
below.

4. SOME RESTRICTED LATENT STRUCTURES

As noted in §3, if a given set of conditional probabilities, e.g. 74X for ¢ = 1, ..., I, is as-
sumed known, then the estimation procedureintroduced in § 2 would be modified accordingly.
Similarly, in the case where the set of probabilities 7 for { = 1,...,7 is assumed known,
this estimation procedure would be modified by using the known values of the 7% rather
than 7% in the calculation of the 7#BPX at each iteration, see (10), (9) and (11); but in order
to ensure condition (14), the denominator on the right-hand side of (13a)—(13d) remains
¥ defined by (12).

The estimation procedure introduced in §2 can also be modified in a straightforward
way to accommodate the following kinds of 7'-class restricted latent structures.

(i) Models in which the following kind of condition is imposed upon the parameters:

maAX = gdX (i =1,...,1). (23)

(i) More generally, models in which the 7' latent classes can be partitioned into
o mutually exclusive and exhaustive subsets 774, ...,7,4, where a < T, and/or into S
mutually exclusive and exhaustive subsets 7,5, ..., 7,5, where f < T, such that

mAX =ndX (LteTH), aEX=nfX (t,t'eFB), (24)

wherea =1,...,0;b=1,...,6;1=1,...,I;5=1,...,J. Compare (24) with (23).
(iii) Models in which, in addition to condition (24), the following kind of condition is
satisfied for certain specified pairs of subscripts, say (@,b), (¢, a*) and/or (b, b*):

X =X (te TP, t e T P);
miX =wdE (teTA treTd); nBX =B (te B, t* e TP), (25)

where ¢ = 1,...,1, where there is a one-to-one correspondence between 4 and j, between
¢ and ¢*, and between j and j*.

(iv) More generally, models in which the kinds of conditions described by (24) and (25),
which were expressed in terms pertaining to variables 4 and B, are extended to other sub-
sets of the m manifest variables in the m-way contingency table.

The above kinds of restricted latent structures are useful in the analysis of Table 1 and
other contingency tables, e.g. Table 4 below, and they will be discussed further in §5 and
examples given there.
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To determine whether the estimated parameters in a restricted latent structure are
locally identifiable, we can use a modified form of the method presented in §2; see (20) and
(21). For example, if restriction (24) is imposed, then the 7' columns pertaining to the deri-
vative with respect to 72X (¢ = 1,...,T'), which we described by (21), would be replaced by
o columns, where the ath column (@ = 1,...,a) is the sum of the corresponding columns
obtained from (21) pertaining to the derivative with respect to 72X for ¢ € T'4; and a similar
kind of replacement would be made pertaining to the derivative with respect to wBX.
If the T classes are partitioned into a, £, v and & subsets with respect to variables 4, B, C
and D, such that conditions corresponding to (24) are satisfied for each of these variables,
then the number of columns in the matrix described by (20) and (21) will be reduced from
T—1+{I+J+K+L—-4)TtoT—1+{I—-1)a+(J—1)f+(K—1)y+(L—1)6. The para-
meters in the restricted latent structure will be locally identifiable if the rank of the
modified matrix is equal to its number of columns.

Under the null hypothesis that the restricted latent structure is true, if the parameters
in the latent structure are locally identifiable, then the asymptotic distribution of the
statistic (15) will be chi-squared with degrees of freedom equal to one less than the difference
between the number of cells in the 4-way table, or m-way table, and the number of columns
in the modified matrix described above. Compare this with (22); the number of degrees of
freedom is equal to the number of ;;; in the basic set minus the corresponding number
of independent parameters estimated under the model, when the parameters are locally
identifiable.

We shall next describe some simple kinds of restrictions that would perforce make the
parameters in the latent structure unidentifiable. Consider first the case where the 7'-class
model is such that

AX AX

— BX _ .BX X CX
M =M™, T =TT, Ty

=nlx, mhX =aBX. (26)
In this case, formula (17) can be replaced by
T -
Ty = 232 OF miX nfiX miX mR¥, (27)
where
¥ rm¥ (t=2),

s t=3,..,T). (28)

oF = |

Thus, we can collapse latent classes (1) and (2) to obtain an equivalent latent structure

having T —1 classes rather than 7' classes; and the parameters 77X and 75 will not be

identifiable unless additional restrictions, other than condition (3), are imposed upon them.
Consider next the case where the 7'-class model is such that

_ BX 0X _ ,0X DX _ DX
=T, Mg =Tgg >, T~ =M™ . (29)

BX
T

In this case, formula (17) can be replaced by

T
— X @4X ,BX .CX DX
ﬂijkl_tg:z 0; OF"* mip™ me Mg (30)

where OF is defined by (28) and

(g OF (=) o1

o7 = |
¢ mixX (t=3,..,T).
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Thus, here too we can collapse classes (1) and (2); and the parameters 7{<, 75, 72X, m4X will
not be identifiable unless additional restrictions, other than condition (3), are imposed
upon them

Consider next the case where the 7'-class model is such that

m =, mRX = nRx. (32)
In this case, (17) can be replaced by
Mo = E OF OFF OF X niF mp, (33)

where the ®’s are equal to the corresponding 7’s for ¢ = 3, ...,7"; and where

2
3 OF 0¥ OFF = ¥ nF¥nfaf, 34
forv=1,...,I;j=1,...,J.When T > 2, (34)imposes IJ restrictions on the ®’s; and because
of (3) the number of ®’s that we need to consider is 2(/ +J —2)+2 = 2(I +J —1). The
04X and @FX are required to satisfy the same kind of condition as (3). Thus, the number of
restrictions on the ®’s will be less than the number of ®@’s that we need to consider when-
ever IJ < 2(I+.J —1), which will be the case whenever variable 4 or B is dichotomous or
when both these variables are trichotomous. In these cases, the ®@’s or the corresponding
7’s will not be identifiable unless additional conditions are imposed upon them.

The remarks in the preceding three paragraphs can be directly generalized to the m-way
table. Conditions (26), (29) and (32) can be expressed more generally as follows: the cor-
responding conditional probabilities in latent classes 1 and 2 are equal for each of the m
variables, see (26), or for m — 1 of these variables, see (29), or for m — 2 of these variables,
see (32). Still more generally, we can consider the case where the corresponding conditional
probabilities are equal in a given subset of the T' latent classes, for the m,m—1, or m —2
variables.

5. SOME APPLICATIONS OF RESTRICTED MODELS

We return now to the analysis of Table 1. Examination of the estimated parameters in
Table 3 for model H,, and/or H; and Hj, would lead us to consider a number of restricted
models of the kind presented in the preceding section. For example, if we impose the restric-
tion that '

DX _
T2

= ﬂlD:SX’ WIC;X = ﬂgX’ (35)
then the chi-squared statistic (15) yields a value of 0-921. Model H, in Table 3 is an example
of a restricted model that will yield this chi-squared value. Since (35) is the same kind of
restriction as (32), model H, will not be identifiable. In this case, the number of ®’s that
we need to consider in (34) exceeds by 2 the number of restrictions on the ®’s. If the matrix
method presented in §4 for studying local identifiability is applied to H,, we find that the
15 x 12 matrix described there has rank 10. Examination of the estimated parameters in
H,, and/or in some other models that yield the same 7, would lead us to consider imposing
the additional restriction that

X = niX. (36)
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Model Hj in Table 3 is an example of a model that satisfies (35) and (36). Examination of
the estimated parameters in H, leads us to impose the additional restriction that

7BX = gBX (37)

which yields model H,. The estimated parameters in H; are identifiable. For this model,
the chi-squared (15) yields a value of 0-921 with 5 degrees of freedom. The 7, for H,, H,
and Hj are the same.

Model Hj is a simple generalization of the 2-class model. In Hy, latent class 2 is inserted
between the other two classes. Latent class 2 is the same as latent class 1 with respect to
two variables, 4 and B, and it is the same as latent class 3 with respect to the other two
variables, C and D. Model H; has one more parameter, and one less degree of freedom,
than H,.

If we had limited ourselves to models in which the parameters are identifiable, we could
have begun our exploration with H;, and then considered models of the H type, i.e. models
in which latent class 2 is the same as latent class 1 with respect to two variables, e.g. 4 and
B, or 4 and C, or 4 and D, and is the same as latent class 3 with respect to the other
two variables.

The method presented in the earlier literature for obtaining consistent estimates of the
parameters in H, can be extended as follows to obtain consistent estimates of the parameters
in H), which can be used as the components in the initial trial value for 7, under Hj, in our
maximum likelihood estimation procedure. Under Hj, the latent structure for the 3-way
marginal table {4 BC}, obtained by ignoring variable D, can be expressed as

3
_ X AX . BX . 0X
Mo = tzlm W™ Mg~ Mg » (38)
where
AX _ -AX BX _ . BX
mHT =M™, Wi =M. (39)

Restriction (39) in the 3-way table is the same kind of restriction as (29) in the 4-way table;
i.e. the corresponding conditional probabilities in latent classes 1 and 2 are equal for m — 1
variables in the m-way table. Thus latent classes 1 and 2 can be collapsed to obtain a 2-class
model for table {4BC}. By estimating the parameters in the 2-class model, we obtain
consistent estimates of the following parameters in the 3-class model Hy: 7:<, 73X, and also
74X and 7BX (t = 1,2,3). A similar analysis of the 3-way marginal table {BCD} yields
consistent estimates of 7, 73X, and also 7¥ and 75X (¢ = 1, 2, 3). The consistent estimates
thus obtained from {4 BC} and {BCD} can be used to provide consistent estimates for all of
the parameters in the 3-class model H, for the 4-way table {4 BCD}. Instead of using {4 BC}
we could have used {4 BD}; similarly, instead of {BCD} we could have used {4CD}.

The method described in the preceding paragraph can be directly extended to more
general restricted models for the m-way table (Goodman, 1974).

We arrived at the identifiable model Hj considered above by imposing restrictions (36)
and (37) upon H,. Other kinds of restrictions could have been imposed upon H, to obtain
other identifiable models that would leave 7;;,; unchanged. See, for example, models Hy
and HY in Table 3, which impose upon H, restrictions (40a) and (40b), respectively, for



228 Lro A. Goopman

¢ = 2. In addition to condition (35) imposed by H,, the imposition of any one of the following
restrictions would still leave 7,;, unchanged

(mgX,nBX) = (1,1) (t=2 or t=3), (40a)
(mdX, 7BX) = (0,0) (t=2 or t=3), (40d)
(i, i) = (1,0) ((F,¢") = (2,3) or (3,2)), (40¢)
(7)) = (1,0) ((#,1") =(2,3) or (3,2)). (40d)

More generally, any set of ®’s that satisfy (34), and that are in the closed 1nterval [o, 1}
would leave 7T”7d unchanged; and these ®’s can be used by assumlng that 74X and 72X,
or any two conditional probabilities from among the 7% and #BX, for ¢t = 2, 3, would be
equal to the corresponding two @’s.

Model Hj had four restrictions imposed upon it, see (35)—(37), and the removal of any
one of the four restrictions, e.g. (37) as in H}, would leave 7,,;; unchanged. Furthermore,
the removal of two particular restrictions, namely (36) and (37) as in Hj, or the two restric-
tions included in (35) would also leave 7,5, unchanged. If restrictions (36) and (37) are
imposed but the two restrictions in (35) are not, then the imposition of any one of the sets
of restrictions corresponding to (40a)—(40d), with 4 and B replaced by C and D in these
formulae, would also leave 7;,; unchanged. A generalization corresponding to the one at the
end of the preceding paragraph can be made here too.

Examination of the estimated parameters in HY leads us to consider next model Hy in
Table 3, in which the following conditions are imposed upon the 3-class latent-class model

BX CX

— AX _ .BX _ CX D.
7711 =Ty =75 7711 =1, mt =G = = "ﬁX = 0. (41)

Examination of the estimated parameters in either H,, H;, Hj or H,, or a more direct ex-
amination of Table 1 could also lead to consideration of a model equivalent to Hj, with label-
ling of latent classes 2 and 3 in H interchanged. Model Hj states that, with respect to the
joint variable (4, B, C, D), individuals in latent classes 1 and 2 will be at levels (1, 1, 1, 1)
and (2, 2, 2, 2), respectively, with probability one; and as usual the manifest variables
(4, B, C, D) are mutually independent for the individuals in latent class 3. Thus, when
levels (1, 1, 1, 1) and (2, 2, 2, 2) are deleted from the 4-way table {4 BCD}, the manifest
variables (4, B, C, D) will be quasi-independent under H;; see, e.g., Goodman (1968). We
could have arrived at Hy by carrying out an analysis of quasi-independence in Table 1
with levels (1, 1, 1, 1) and (2, 2, 2, 2) deleted, followed by the insertion of latent classes 1 and
2 to account for the observed frequencies atlevels (1, 1,1, 1) and (2, 2, 2, 2), respectively.

We consider next model Hy in Table 3, in which the following conditions are imposed upon
the 4-class latent class model

AX _ A4AX 4X AX BX _ . BX BX _ .BX

1 g™, Mg~ =TTig , 7Ty Mg~ Mg~ =Ty, (42)
X _ . 0X X OX DX _ DX DX _ DX

i =TEo, T |—' T 7T~ =mMg", T s

This model is an extension of H, and Hj. In H, latent classes 2 and 3 are inserted between
the two latent classes of H;, which we now call, for convenience, latent classes 1 and 4, with
latent class 2 the same as latent class1 with respect to two variables, 4 and B, and the same
as latent class 4 with respect to the other two variables, C and D, and with latent class 3 the
same as latent class 4 with respect to the former two variables, 4 and B, and the same as
latent class 1 with respect to the latter two variables, C and D. Model H; has two more
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parameters and two less degrees of freedom than H,, and one more parameter and one less
degree of freedom than Hj.

We can view latent variable X in Hg as the joint latent variable (Y, Z), where latent
variables Y and Z are dichotomous, and where latent level ¢ in Hy (¢ = 1, 2, 3, 4) describes
the joint latent level (r,s) with respect to (Y, Z), with (r,s) = (1, 1), (1, 2), (2, 1), (2,2) cor-
responding tot = 1, 2, 3, 4, respectively. Under H;in Table 3, variables 4 and B are affected
by the level of latent variable Y but not Z, and variables C and D are affected by the level
of latent variable Z but not Y. For further insight into the meaning of Hy and its latent
variables (Y, Z), see the corresponding interpretation of model II, a model of the Hy
type, in §6 below.

Having indicated above with Hg how to obtain a latent structure containing two latent
variables, ¥ and Z, we can use similar methods to obtain structures containing more than
two latent variables. Model H, and models similar to it, will be found useful in the analysis
of many m-way tables; see e.g., § 6 below.

When we introduced Hg above, it was first described as an extension of H,, and we intro-
duced Hj still earlier in a similar way. The various remarks following the introduction of
Hj can be directly extended to H;. As an example of a different identifiable model that yields
the same 77, as Hy, we can consider the 2-class model applied to the 3-way table consisting
of variables 4, B, and the joint variable (C, D), or variables C, D, and the joint variable
(4, B), under certain conditions which we omit here to save space (Goodman, 1974).

Model Hy, and some of the other models considered earlier in the section, provide examples
of latent structures that impose the kinds of conditions described by (24) expressed in
terms pertaining to various subsets of the manifest variables. As examples of models that
impose the kinds of conditions described by (25), we consider next H,, Hy and H,in Table 3,
which impose conditions (43), (44) and (45), respectively, upon models H,, H, and H;, respec-
tively.

BX _ 0X BX _ .CX

i —"ﬁ y Mg =T, (43)
_ - BX DX _ DX

”ﬁx—"ﬁ » Mo =Te™, (44)

BX __ X

nBX = nGX. (45)

Models H, and Hg can be interpreted in the same way as H,, but there are fewer independent
parameters in the former models. Similarly, model H, can be interpreted in the same way
as Hy, but there are fewer independent parameters in H,. Note that H, and H, state that both
variables B and C are affected in the same way by the latent variable X ; and H states other
things as well; see (44). From Table 2 we see that these models fit the data very well indeed.

6. ANOTHER EXAMPLE

Table 4 (Coleman, 1964, p. 171) cross-classifies schoolboys interviewed at two successive
points in time. Variable 4 denotes self-perceived membership in the ‘leading crowd’,
in it or out of it, at the time of the first interview, variable B denotes attitude concerning
the leading crowd, favourable or unfavourable, expressed at the first interview and variables
C and D denote the corresponding membership and attitude at the second interview. For
brevity, we consider here only two models: (I) model H, in which there is one latent dicho-
tomous variable, and (IT) a model of the Htype in which there are two latent dichotomous
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variables, say ¥V and W, where latent variable V can affect manifest variables 4 and C,
and latent variable W can affect manifest variables B and D. The chi-squared values for
models I and IT are given in Table 5, together with the corresponding estimated parameters.
The improvement in fit obtained with model IT is dramatic.

Table 4. Observed cross-classification of 3398 schoolboys, in interviews at two successive
points in time, with respect to two dichotomous variables: (1) self-perceived membership in
‘leading crowd’, and (2) favourableness of attitude concerning the ‘leading crowd’

Second interview
N

Membership + + - -
Attitude + - + -

First interview
A

Membership Attitude

\
J

+ + 458 140 110 49
+ - 171 182 56 87
- + 184 75 531 281
- - 85 97 338 554

Table 5. Chi-squared values for two latent structures applied to Table 4
and the corresponding estimated parameters™®

Number of
latent Degrees of Likelihood ratio Goodness-of-fit
Model variables freedom chi-squared chi-squared

I 1 6 249-502 251-171

II 2 4 1-270 1-281
Model  Latent class ¢ pd AAxX ABX ACx APx
I 1 0-401 0-769 0-645 0-889 0-674
2 0-599 0-101 0-467 0-090 0-499
II 1 0-272 0-754 0-806 0-910 0-832
2 0-128 0-754 0-267 0-910 0-302
3 0-231 0-111 0-806 0-076 0-832
4 0-368 0-111 0-267 0-076 0-302

* For model II, the symbol X denotes the joint latent variable (V, W), and the four latent classes
correspond to the four levels with respect to this joint variable; ie. (1, 1), (1, 2), (2,1) and (2, 2),
respectively.

Model IT for Table 4 states that (a) there are two latent dichotomous variables, V and W,
pertaining to latent self-perceived membership in the leading crowd and latent attitude
concerning the leading crowd, respectively; and (b) these two latent variables alone can
explain the observed relationships among the manifest variables (4, B, C, D). The relation-
ship between the two latent variables can be estimated using the 7% for model IT in Table 5;
the other estimated parameters for this model can be used to estimate the effects of each
latent variable upon the corresponding manifest variables. For a comparison of this model
with the models presented by the present author in his earlier article (1973) analyzing
Table 4 above, see Goodman (1974).
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