Chapter 2

A General Approach to Confirmatory
Maximum Likelihood Factor Analysis

with Addendum

Karl G. Jéreskog

We describe a general procedure by which any number of parameters of
; the factor analytic model can be held fixed at any values and the remaining
i free parameters estimated by the maximum likelihood method. The generality
! of the approach makes it possible to deal with all kinds of solutions: orthog-
onal, oblique and various mixtures of these. By choosing the fixed parameters
appropriately, factors can be defined to have desired properties and make
subsequent rotation unnecessary. The goodness of fit of the maximum likeli-
hood solution under the hypothesis represented by the fixed parameters is
tested by a large sample x* test based on the likelihood ratio technique. A by-
product of the procedure is an estimate of the variance-covariance matrix
of the estimated parameters. From this, approximate confidence intervals
for the parameters can be obtained. Several examples illustrating the use-
fulness of the procedure are given.

1. Introduction and Summary

We shall describe a general procedure for performing factor analysis
in the following way. Any values may be specified in advance for any number
of factor loadings, factor correlations and unique variances. The remaining
free parameters, if any, are estimated by the maximum likelihood method.
A typical application of the procedure is in confirmatory factor studies, where
the experimenter has already obtained a certain amount of knowledge about
the variables measured and is therefore in a position to formulate a hypothesis
that specifies some of the factors involved. For exploratory maximum likeli-
hood factor analysis a computer program has been made available earlier
i [J6reskog, 1967(a—b)]. This can be used to determine an appropriate number

of factors to use and a preliminary interpretation of the data. The present
procedure can then be used for a more precise analysis. We shall give examples
of how a preliminary interpretation of the factors can be successively modified
to determine & final solution that is acceptable from the point of view of both
goodness of fit and psychological interpretation. It is highly desirable that
a hypothesis that has been generated in this way should subsequently be
confirmed or disproved by obtaining new data and subjecting these to a
confirmatory analysis. Joreskog and Lawley [1967], giving an expository
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account of both exploratory and confirmatory methods, present an example
where the original sample was randomly divided into two halves, where one
half was used to generate a hypothesis and the other half was used to test this
hypothesis.

The approach of this paper is similar to those of Howe [1955], Anderson
and Rubin [1956], Lawley [1958] and Joreskog [1966], but is more general in
that it is possible to deal with all kinds of solutions: orthogonal, oblique and
various mixtures of these. The fixed elements need not necessarily be zeros
and the restrictions need not even be sufficient to make the solution unique.
Factors can be defined to have desired properties and if a preliminary inter-
pretation is available, the restrictions can be chosen to make any subsequent
rotation unnecessary. Several examples are given in Sections 4 and 5 to
illustrate the usefulness of the procedure.

The computational procedure is based on the minimization method of
Fletcher and Powell [1963] and yields as a by-product an estimate of the
variance-covariance matrix of the estimated parameters. From this, ap-
proximate confidence intervals for the parameters can easily be obtained.

Confirmatory Factor Analysis

2. Preliminary Considerations

In factor analysis the basic model is
(1) y = Az + 2

where y is a vector of order p of observed test scores, z is a vector of order
k < p of latent common factor scores, 2 is a vector of order p of unique scores,
and A = (\:v) isa p X k matrix of factor loadings. It is assumed that E(z) =
E(z) = 0, E(zz") = & and E(zz') = ¥, a diagonal matrix. From these as-
sumptions one deduces that the dispersion matrix of y, Z = E(wy'), is

(2) Z = A®A 4+ T

The basic idea of the model is that the common factors z shall account for
all correlations between the 3's. Once factors z have been partialed out,
there shall remain no correlation between the tests.

The elements of A, ® and ¥ are parameters of the model to be estimated
from the data. Suppose that from a random sample of n 4 1 observations
of y we find the matrix S whose elements are the usual estimates of variances
and covariances of the components of y. If y has a multivariate normal dis-
tribution, the elements of S follow a Wishart distribution with n degrees of
freedom. The log-likelihood function, neglecting a funetion of the observa-
tions, is given by

3) log L = —in[log |Z| + tr (S279)].
Let
(4) F(A, ® ¥) = log |Z| + tr (827") — log [S] — p.
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Then maximizing log L is equivalent to minimizing F, and n times the
minimum value of F is equal to the likelihood ratio test statistic of goodness
of fit [see e.g., Joreskog, 1967b]. It should be noted, however, that if T is
any nonsingular k& X k matrix, then

(5) F(AT™', T®T', ¥) = F(A, &, ¥).

This means that the parameters in A and ® are not independent of one another,
and in order to make the maximum likelihood estimates of A and @ unique,
we must impose k° independent restrictions on A and @. In an exploratory
factor analysis, where no hypotheses concerning the factors are involved,
it is convenient to choose these restrictions so that ® = I and A"F7'A is
diagonal [see e.g.,, Lawley & Maxwell, 1963; Joreskog, 1967b]. In a con-
firmatory factor analysis, on the other hand, the investigator has certain
hypotheses as to which factors are to be involved in certain tests, and it is
therefore convenient to choose the restrictions by requiring that certain
elements of A and ® have values specified in advance. For example, \;, = 0
means that the m-th factor does not enter into the 7-th test and ¢,, = 0 means
that factors r and s are uncorrelated. Values other than zero could be used
also. Depending on the number, values and positions of the fixed elements
in A, ® and ¥, we may distinguish between two kinds of solutions: unrestricted
and restricted. An unrestricted solution is one that does not restrict the common
factor space, i.e., one that leaves A®A’ unrestricted. All such solutions can
be obtained by a rotation of an arbitrary unrestricted orthogonal maximum
likelihood solution, for example, one obtained by the computational procedure
of Joreskog [1967a-b]. An unrestricted solution will usually result if the
number of fixed elements in A and & is at most k* and if these elements are
properly distributed over all factors. All unrestricted solutions for the same
data will have the same communalities and the same uniquenesses, and they
will all yield the same fit to the observed variances and covariances in S.
In an unrestricted solution no element of ¥ can be held fixed, since clearly
a restriction on ¥ is a restriction of the common factor space. A restricled
solution, on the other hand, imposes restrictions on the whole factor space,
and such a solution, therefore, cannot be obtained by a rotation of an un-
restricted solution. Communalities and uniquenesses will not be the same
for an unrestricted and a restricted solution for the same data. The fit to
the observed variances and covariances in S, as measured by the function F,
will, in general, be better for the unrestricted than for the restricted solution.
However, if differences in number of estimated parameters are taken into
account this may not be so.

Both unrestricted and restricted solutions may or may not be unique.
This depends on the positions and values of the fixed parameters. A solution
is unique if all linear transformations of the factors that leave the fixed
parameters unchanged also leave the free parameters unchanged. Various
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sufficient conditions for a unique solution have been given by Reiersgl
[1950], Howe [1955] and Anderson and Rubin [1956].

Two simple sufficient conditions, as given by Howe [1955], are as follows.
In the orthogonal case, let & = I and let the columns of A be arranged so
that, for s = 1, 2, --- , k, column s contains at least s — 1 fixed elements.
In the oblique case, let ding ® = I and let each column of A have at least
L — 1 fixed elements. It should be noted that in the orthogonal case there
are 1k(k + 1) conditions on @ and a minimum of 3k(k — 1) conditions
on A. In the oblique case there are k normalizations in ® and a minimum of
k(k — 1) conditions on A. Thus, in both cases, there is a minimum of k&*
specified elements in A and ®. Let A be a solution under any such conditions
and let A’ be the submatrix of A, consisting of those rows of A, that has
fixed elements in the s-th column. Then A is unique if foralls = 1,2, -+, k,
A has rank equal to the smallest of the numbers m, and k, where m, is
the number of fixed elements in the s-th column of A. This condition is usually
fulfilled in practice. It should be noted that even a restricted solution need
not be unique. For example, an orthogonal solution with no restrictions on
the first two columns of A and with more than ik(k — 1) fixed elements
in the other columns is restricted but not unique. Any orthogonal rotation
in the plane of the first two factors will change these and leave all the fixed
elements unchanged. In general, if a solution is not unique, transformations
may exist that change the free parameters while leaving the fixed parameters
unchanged. To make the solution unique, additional restrictions must be
imposed.

In addition to the two main kinds of restrictions on ®, orthogonal and
oblique, various mixtures of these can be used. For example, one factor
may be postulated to be uncorrelated with all the others—these factors
being correlated among themselves. It is convenient to refer to all such solu-
tions as mized solutions.

Tixamples of many different kinds of solutions are given in Sections 4
and 5.

3. Minimization Procedure

The minimization problem is that of minimizing the funetion F(A, &, ¥)
with respect to the free parameters, keeping the others fixed at the given
values. A numerical procedure for obtaining the maximum likelihood esti-
mates, under certain special cases, was first given by Howe [1955). A very
similar procedure was later proposed by Lawley [1958] and referred to
subsequently by Lawley and Maxwell [1963]. In both cases the derivatives
of I are equated to zero and, after some simplification, a numerical solution
of the resulting equations is sought. Recent work suggests, however, that
these procedures do not always converge [Joreskog, 1966). Even when con-
vergence does oceur, it is usually very slow. A better method, for which
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ultimate convergence is assured, was given by Joreskog [1966]. Experience
with this method has revealed that it is sometimes still difficult to obtain a
very accurate solution unless many iterations are performed. Efficient
minimization of F(A, ®, ¥) seems impossible without the use of second-order
derivatives.

The present procedure is based on the method of Fletcher and Powell
[1963], which was used successfully in the unrestricted maximum likelihood
problem [Jéreskog, 1967b). It is a rapidly converging iterative procedure for
minimizing a function of several variables when analytical expressions for
the first-order derivatives are available. The efficiency of the method is
obtained by the use of a matrix E, which is evaluated in each iteration.
Initially, E is any positive definite matrix approximating the inverse of the
matrix of second-order derivatives. In subsequent iterations F is improved,
using the information built up about the function, so that ultimately E
converges to the inverse of the second-order derivative matrix, evaluated at
the minimum. If the number of parameters is large, the number of iterations
required may still be large, but this can be decreased considerably by the
provision of a good starting point and good initial estimates of second-order
derivatives. Since the iteration equations have been given in detail by Joreskog
[1967b], they are not repeated here. The function F is considered only in the

wmmmon...crmwo__v:,wm_sﬂrw,;u.?Hmo:ﬁ559.2.%%5:@%.;?@
number e. The treatment of these boundary conditions is the same as is
given in the paper by Joreskog.

The real advantage with the Fletcher and Powell method, as compared to
the Newton-Raphson method, is that once an initial estimate of I has been
obtained, the successive modifieations of E throughout the iterations can
be done very rapidly. One variant of the Newton-Raphson method computes
the matrix of second-order derivatives and its inverse in each iteration, but
this can be very time-consuming, especially when the number of parnmeters
is large. Another variant of the Newton-Raphson method computes the
matrix of second-order derivatives and its inverse only once and uses this
inverse in all iterations. Such a procedure may require a large number of
iterations to converge, espeeinlly if the starting point is not close to the solu-
tion point. The Fletcher and Powell method is a compromise between these
two extremes. It improves the inverse of the matrix of second order derivatives
in each iteration at very little cost.

In the unrestricted maximum likelihood problem it is possible to eliminate
the parameters in A analytically so that the method of Fletcher and Powell
is applied to a function of p variables only. Unfortunately, such a two-stage
minimization procedure is not possible in this case, except under certain
gpecial conditions. The function F has, therefore, to be minimized simul-
taneously with respect to all free parameters. In a factor analysis of 40 tests
and 10 factors, say, the number of free parameters may be almost 400 and,
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rix E, which must be evaluated in each iteration, is 6. Compute I from (4) using |Z]| from step 2 and tr (S27') from
+ 108 step 5. (The quantity log |[S| 4+ p is a constant computed before
the minimization begins.)
7. Compute E = C — ¢D = Z7'(2 — §)z™'
8. Compute G = LA
9. Compute 2G® = aF/dA

consequently, the mat
of order 400 X 400. The handling of such matrices in a computer presents
many difficulties, even with present-day computers.

The function F is considered as a function of the free parameters in A,
the frec parameters in the lower half of ®, including the diagonal, and the
free parameters in the diagonal of ¥. Expressions for the first-order derivatives .
of F have been given elsewhere [sce e.g., Lawley & Maxwell, 1963; Joreskog, 10. Compute cA'G = aF /3%

11. Compute ding £ = aF/o¥

1966]. These expressions are 18 s
- 12. Form the vector dF /46 from the quantities of steps 0-11.

I

(6) aF/aA = 237'(Z — S)Z7'A® Formulas for 1 I
. o “ormulas for large-sample approximations of second-order derivatives
@) oF/od = A'ENE — 5z Ln =1 M.S. ma.mﬂ.sp mwmn_:oﬂnﬁm . v _ of F were a.mn?ma by Lawley [1967] and independently by Lockhart [1967].
¢ = 2 for non-diagonal elements i Lawley derived them by differentiation of the elements of the first order

derivative matrices ignoring contributions arising from the differentiation

®) aF/a¥ = diag [Z7'(Z — 9)Z7),

. ; of elements of Z — S. Another way to derive these formulas is to make
with the understanding that elements in the matrices on the left that cor- . use of the covariance structure of a Wishart matrix S [gee e.g., Anderson
respond to fixed values of A, ® and ¥ are zero. The above matrices may be § 3 1958, Theorem 4.2.4], ' T
simplified for computational purposes by use of the identities e

(11) (s — a0)(8; — 0:1)] = 000 + 0400 .

(@ 7 = ¢ — UA( + BATTA) T EANYT

: As shown by Lawley [1967], the formulas for sccond-order derivatives
(10) A = UA 4 YA | i can best be expressed in terms of the elements of the following matrices

The {ree parameters in A, &, ¥ are arranged in a vector 8 as follows. ;N (12) e BT

Let 6, ,%=1,2, -+, k be a vector containing the fres parameters in column j : (13) = o
i of A and let 6,., and 8., be vectors containing the free parameters in ® : =2 Ad =@
and ¥ respectively, Then 8 = (6], 67, -+, !..). Formally we may now . (14) o= WEN = 3%
regard F as a function of 6 and write F(6). Similarly we may arrange all R | 15) = e
nonvanishing derivatives as a gradient vector 9F/d0. If there are g free : B = A= $a
parameters all together, 0 and aF/a0 are vectors of order g¢. i : (16) v = DA'TTAD = B,

The Fletcher and Powell method requires repeated computation of
function values F(6) and gradient vectors dF /6. For the iterative procedure .
_ to work satisfactorily it is necessary that this be done rapidly and accurately. : : a7 E(9°F/ah.,0M,.)

The following method is used. : )
\ G . , (18) (3T /X, 0¢b,0)
1. Compute I' = A'¥'A and I + &r. The last matrix is unsymmetric, : :

The formulas then become

wnqmmﬂ: + .q..-d_._.v
AM T m..uﬁm...ml l—. m:m_..v

I

nonsingular and of order k X k. Invert this to give A = (I + &)™, : (19) E(@@/oN.8¢:) = 2¢ ¥
| This also gives |1 + T E (20) E0'F/3$,.080) = H2 — 8.2 — bu)(ovan + ana)
2. Compute 2
” 3 AMHU Nwhnw N_A\mav:mﬂ\:v e AM e %:vm_{m..-
5| = Q.H_ bue) 1T + @] @)  E@F/avidvs) = (@)
3. Compute B = A® o Here 3,, is Kronecker’s delta, which is 1 if » = s and zero otherwise. Except
4. Compute ¢ = ¥' — TIABAY T = 27! for (18), (20) and (21), these formulas agree with the results obtained by

Lockhart who gives these results without the factors involving the #&'s.

5. Compute D = SC = SZ™' and tr D = tr (8z7h
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However, these factors are necessary if some factor is not scaled to unit
variance. This will usually be the case whenever there are fized non-zero
values in A. .

As an example of how these formulas are derived from (11), we prove
the last formula. The -th and j-th diagonal elements of F/a¥ are

(23) OF fode: = 2 2 0 “(Sap — Tap)d”
a=1 B=1

(24) oF/av; = 2 . 0 (8ur — Tur)"
u=1 w=

Multiplying these and using (11) then gives

Hﬁmuﬁ\mﬁrmﬁlv = ﬁﬁ\wuh@wﬂ\mﬁz AF /)

O X T X " e B sas — e un — )]
a B u »

Y Xt e v,
e 5

a a
= ﬁQ}uVH-
where the first step follows from a general formula for likelihood functions
[see e.g., Kendall & Stuart, 1961, eq. 18.60]. o .

The computational method starts with arbitrary initial estimates of
A, @, . The better these are, the fewer iterations will be required. If most
of the restricted parameters are in A and these are sufficient to define A
uniquely, such initial estimates can be obtained by rotating an unrotated
orthogonal factor matrix using some Procrustes method, e.g. that of Lawley
and Maxwell [1964]. In our computer program [Joreskog & Gruvaeus, 1967],
we generate initial estimates by a modified centroid method, if they are not
provided by the user. From the initial starting point five steepest descent
iterations are performed. Steepest descent iterations have vmmﬁ found to be
very effective in the beginning but very ineffective in the neighborhood of
the minimum. After these five iterations one has usually come so &omw to
the minimum that it is worthwhile to compute the above approximations
for second-order derivatives. . .

When suitably arranged these form a symmetric positive mmmE.g matrix
G. The inverse matrix G~' then serves as an initial approximation to E,
and in subsequent iterations the Fletcher and Powell method is employed
and the matrix £ is modified accordingly.

When the number of free parameters to be estimated is large so that
the order of the matrix G is large, the inversion of G is very difficult wn&
time-consuming. In this case an approximation for @' which is sufficient
to determine an initial estimate of & can be obtained as follows. Let

Il

I
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Gn - 0 0 0
(25) B=|0 G

0 v Graan

0 L Giirien
where
(26) G = 9°F/38.06), i=1,2 - ,k+2.

Then B™" can be taken as an initial estimate of E. This is reasonable because
earlier studies on sampling variability have indicated that a factor loading
in one column of A correlates little with a factor loading in another column,
with a factor correlation and with a unique variance. This reduces the problem
to that of inverting k + 2 small matrices instead of one large matrix. In the
Fletcher and Powell iterations the full E matrix is used.

The above method has been programmed in FORTRAN IV and tested
out on the IBM 7044 [Jéreskog & Gruvaeus, 1967]. The program performs
all computations in memory and is limited to at most 30 variables, 10 factors
and 120 free parameters. The program is quite feasible for all the sets of
data that it can handle. In computers with larger storage capacities than that
of the IBM 7044, the above limits can be increased so that larger data can
be handled.

When the minimum of F has been found, the minimizing values of A,
& and ¥ are the maximum likelihood estimates A, ® and ¥, and the hypothesis
implied by the fixed parameters can be statistically tested. The maximum
likelihood estimate of £ under the hypothesis is

(27) 2 = AdA' + ¥,
and the likelihood ratio test statistic for testing the hypothesis is
(28) nllog 2] — log |S] + tr (S27) — pl.

This is simply 7 times the minimum value F(A, &, ¥) of F(A, &, ¥). If
n is large, this is distributed as x* with

k
29) d = 4plp + 1) — pk — 3k(k + 1) — p + my + 3 max {m, , k|
=1
degrees of freedom, where m; is the number of independent restrictions on
factor 7, including restrictions on the ¢;; and the ¢;; , and mg is the number
of fixed parameters in ¥. In some cases the evaluation of the last term of
(29) may be ambiguous. For example a restriction on ¢;; may be counted as
a restriction either on factor 7 or on factor j. The rule to follow is to distribute
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guch ambiguous restrictions so as to make the last term in (29) minimum.
Examples of this rule are given in the next section.

The final matrix E that has been built up during the iterations is an
approximation to the inverse of the matrix of second-order derivatives at
the minimum. When multiplied by (2/n) this gives an estimate of the vari-
ance-covariance matrix of the maximum likelihood estimates of the free
parameters. Substantial experience with the method, however, has revealed
that this estimate is not sufficiently accurate for most purposes. This is due
to the fact that the matrix E is built up assuming the function to be exactly
quadratic [see Tletcher & Powell, 1963]. Our function F is not quadratic,
however, but is approximately so in a small region around the minimum.
It should be noted that the matrix E is used essentially for the purpose of
obtaining fast convergence and not of providing an estimate of the informa-
3 i tion matrix. Convergence is usually obtained in less than ¢ iterations, often

{ much less. However, at least ¢ iterations in a quadratic region are necessary
to build up numerically an accurate estimate of the inverse of the second-
order derivative matrix. To obtain an accurate estimate of the variance-
covariance matrix of the estimated parameters it is best, therefore, to re-
compute the second-order derivative matrix at the minimum and invert
this. Denoting the matrix so obtained by E*, only the diagonal elements of
this, corresponding to variances of estimates, would normally be of interest.
For any parameter §; with corresponding maximum likelihood estimate 6;
and variance of estimate e* , an approximate 95% confidence interval is

30) b — 2V @/mek < 6, < b + 2V 2/mek .

This formula should be used only when the restrictions are such that the
1 golution is unique.
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4. An Analysis of Nine Mental Ability Tests

We shall illustrate the preceding ideas and methods and indicate some
possible uses of the approach on the basis of two sets of empirical data.
The analysis of the first data is reported in this section and that of the second
in the next scction.

The first sct of data consists of nine mental ability tests selected from a
battery of 26 tests previously analysed by Holzinger and Swineford [1939].
{ The nine tests are listed in Table 1. They can be thought of as measuring
essentially visualization (tests 1, 2, 3), verbal intelligence (tests 4, 5, 6) and
speed (tests 7, 8, 9). A full description of the tests is given in the above
: reference, where miscellaneous descriptive statistics are given also. Data
3 were obtained on seventh- and eighth-grade children from two different
1 schools. Only the data from the Grant-White school sample of 145 children
: are used here. The correlations were computed directly from the raw scores
given by Holzinger and Swineford.
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(Data from Holzinger & Swineford [1939).
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8.
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Tables la—g show seven different maximum likelihood solutions for
these data obtained under different identification conditions imposed on
the factors. The fixed values of the parameters are marked with asterisks,
and the number of fixed parameters is denoted m and is listed above each
table. The value of x* and the degrees of freedom as computed by (28) and
(29) respectively are given below each solution. The probability level P of
the x* value is also given. This is defined as the probability of getting a
x* value larger than the value actually obtained, given that the hypothesized
pattern is true. Thus, small values of P correspond to poor b and large
values to good fit.

In Table 1a we have postulated that the factors be uncorrelated and
have unit variances. The latter, of course, is just an arbitrary scaling of
the factors and will be used throughout. This gives m = 6 fixed parameters.
Since k = 3, we should normally requirem = k* = 9 independent restrictions
to obtain a unique solution. The solution of Table 1a is therefore not unique
but is just an arbitrary orthogonal solution. It happens to be the first one
that the computer program found. Tt can be ratated orthogonally or obliquely
to any other unrestricted maximum likelihood solution for the same data.
To obtain an orthogonal solution, for example, we postmultiply the factor
matrix by an orthogonal matrix of order 3 X 3. Since this matrix has three
independent elements, it can be chosen to satisfy three independent restric-
tions on the factor loadings.

A particular set of such restrictions is used in Table 1b. It is seen that
three factor loadings have been postulated to be zero. Test 1 (Visual Percep-
tion) is postulated not to load on factor 3, and test 4 (Paragraph Com-
prehension) is postulated to load only on factor 1, the idea being that factor 3
should be a speed factor, factor 2 a visualization factor and factor 1 a general
factor. The solution of Table 1b represents an unrestricted orthogonal solu-
tion with nine fixed parameters. Given these fixed values, the solution is
. unique. It can be verified readily that the conditions for uniqueness, given
2 in Section 2, are satisfied. The rows of the factor matrix can be permuted

" so that the zeros appear in the upper right triangle, hence the term general
triangular solution. Table 1b serves to illustrate one important point, namely,
} that one has nothing to lose but may have much to gain by fixing the three
1 zero loadings. By choosing these zero loadings appropriately, the solution
will be directly interpretable, thus making subsequent rotations unnecessary.
However, if further rotation is still found to be preferable, the solution can
be rotated orthogonally or obliquely by any of the available methods. If
the zero loadings are not too unreasonable, the rotation can probably be
done by hand. We shall return to the interpretation of the solution of Table 1b
after examining some other solutions.
Another unrestricted solution is shown in Table le. Here the factors
are permitted to be correlated. To make the solution uniquely determined,
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we have chosen three reference variables, tests 1, 4 and 7, to represent the
factors. These reference tests are postulated to be pure in their respective
factors. Thus Table lc represents an unrestricted oblique unique solution
with m = 9 fixed elements. That the solution is unrestricted and unique is
readily verified by showing that there is a unique transformation from the
solution of Table 1a to that of Table le. Reference variables solutions are
particularly useful gince they impose just enough restrictions to make the
solution unique, and if the reference tests are carefully chosen to tap the
factors of interest, the solution will be directly interpretable in most cases.
The solution in Table le exhibits a fairly clear simple structure. It is seen
that the first seven tests are all loaded in one factor only, whereas the last
two tests are more complex, being loaded not only in the speed factor bub
also in the visualization factor. One interpretation of this might be that
the material in tests 8 and 9 consists of configurations in the plane in a way
gimilar to tests 1 and 3. That test 9, in particular, should involve some
visualization factor is evident from the fact that it is necessary here to break
up a letter into straight and curved lines. Test 8, on the other hand, has
its highest loading on the speed factor.

The solutions of Tables 1a, 1b and lc are three different unrestricted
golutions for the same data. This is reflected in two ways in the tables: the
unique variances are the same, and the x° values and the corresponding degrees
of freedom are also the same for the three solutions. The probability level of
0.64, in this case, merely indicates that three factors are sufficient to account
for the intercorrelations between the tests.

Let us now assume that it has been hypothesized in advance that the
tests form three independent clusters so that tests 1, 2 and 3 are loaded in
the visualization factor only, tests 4, 5 and 6 in the verbal factor only and
tests 7, 8 and 9 in the speed factor only. This leads to the solution of Table 1d,
where the free parameters have been estimated by the maximum likelihood
method. This is a restricted oblique solution with m = 21 fixed parameters.
Only nine of these restrictions are necessary to make the solution unique;
the additional 12 restrictions affect the whole factor space. This is dem-
onstrated by the differences in unique variances between Tables 1 and 1d
and also by the large increase in x’. The x* value is 51.19 which, with 24
degrees of freedom, is highly significant. The hypothesized factor structure
must therefore be rejected as being untenable.

The question now arises as to what is causing the poor fit of the solution
in Table 1d. In general, poor fit may be due to the fact that either the number
of factors is untenable or the hypothesized structure is untenable, or both.
In this case, we know from any one of the solutions of Tables 1a, 1b and lc
that three factors are tenable, so the poor fit must be due to a too restrictive
structure. Which of the hypothesized zero loadings are then untenable?
There are several ways to find this out. One way is to examine the residual
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R RGN

TABLE 2

Approximate me Confidence Intervala for the Parameters in the Solution of Table 1b

0.71 % 0.17 0.00% 0.00% 0.50 * 0.18
0.54 + 0,25  -0.03 + 0.1k  -0.08 % 0.19 0.74 + 0.20
0.67 % 0.24 0.0k + 0,19  -0.09 # 0.23 0.5% & 0.19
0.00% 0.87 + 0.18 0.00% 1.00% 0.24 + 0.10
-0.03 + 0.21 0.81 # 0.15 0.13 + 0.22 0.54 + 0.22 1.00% 0.30 # 0.11

0.01 + 0.25 0.82 + 0,18  -0.01+0.22 0.2k £0.30  0.28 $0.23  1.00% 0.32 + 0.11

0.00" 0.00% 0.78 + 0.23 0.39 + 0.2}
0.42 + 0.2k -0.30 + 0.18 0.73 + 0.22 0.32 + 0.19
0.5 +0.22  -0.06 + 0.15 0.41 + 0.19 0.46 + 0.1h

correlations obtained after the three factors have been removed. A better,
more direct, way is to compute approximate confidence intervals for all the
free parameters of the solution of Table le. These confidence intervals are
given in Table 2. It is seen that several of the loadings that were sef equal
to zero in Table 1d are indeed not significantly different from zero but a
few of them are. Relaxing two of the zeros in the first factor of Table 1d
and adding the restriction ¢,, = 0 yields the solution of Table le. Since
one of the factor correlations is postulated to be zero, whereas the other
factor correlations are free, this represents a restricted mixed solution with
m = 20 fixed parameters. It should be noted that we have relaxed two of
the zero factor loadings but have added a zero factor correlation. Thus the
number of fixed parameters is only one less than before. The value of x"is
now 26.47 with 23 degrees of freedom. This has a probability level of 0.28.
The solution is therefore acceptable, and it has also been verified that the
values of all the free parameters are statistically significantly different
from zero. The interpretation of the solution is very similar to that of Table
le. Tn terms of the three factors, visualization, verbal and speed, the first
seven tests are pure tests, whereas the last two tests are more complex.
The loadings of these on the visualization factor have already been commented
upon. It should be noted that factors 1 and 3 are uncorrelated but both of
them correlated with factor 2. This suggests that the verbal factor is more
general than the other two factors and that one might try to split this factor
up into a general factor which influences all the tests and a more specific
factor which is associated only with tests 4, 5 and 6.

The solution of Table 1f represents the results of such an attempt.
It was postulated that there should be an orthogonal solution with a general
factor and three group factors, the first one not loaded in test 4, the second
one not loaded in tests 1 and 7 and the third one not loaded in tests 1, 2 and 4.
Tt is seen that the visualization and speed factors appear as before, but the
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attempt to isolate one general and one verbal factor was not successful.
Tests 4, 5 and 6 load only in the general factor, and the second group factor
is a very weak one having no psychological interpretation. This solution,
therefore, is an example of overfactoring. If the second group factor is omitted
and zero loadings postulated to identify the other two group factors as before,
we arrive at the unrestricted orthogonal three-factor general triangular solu-
tion as in Table 1b. In this solution, all the small loadings are not significant.
If these are set to zero, we get the restricted orthogonal solution of Table 1g.
' The solutions of Tables le and 1g are two alternative final solutions for
these data. Both solutions are final in the sense that all nonzero parameters
are significant. The solution of Table le is slightly more restrictive than that
of Table 1g, but the latter has a much better fit. The choice between the
solutions, of course, is a matter of psychological theory [e.g., cf. Thurstone,
1947; Vernon, 1951].

t The above examples show how the procedure of Section 3 ean be used in
an exploratory way to determine a solution that is reasonable from the point
of view of both goodness of fit and psychological interpretation.
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The second example serves to illustrate how our method can be used
to analyse two batteries of tests into interbattery factors and battery specific
factors. Tucker [1958] developed a method for determining factors that is
common to the two batteries. These factors, called interbattery factors,
account for the correlations between batteries but may not account for cor-
relations within batteries. This example shows how factors that are specific
to each battery can also be determined.

We shall use the same data as were used by Tucker. The data consist
of nine tests from Thurstone and Thurstone [1941] listed in Tables 3a-d.
The first four tests constitute battery 1 and the last five battery 2. Within
= b and between correlations are given in Tucker's Table 2. The correlations are

: based on a sample of 710. Tucker found two interbattery factors that account

for the correlations between batteries. This was also supported by a statistical
test. However, two factors do not adequately account for all the correlations
in the whole 9 X 9 correlation matrix. We checked this by performing an
3 unrestricted maximum likelihood analysis with two factors. This gave x* =
: 50.10 with 19 degrees of freedom which is highly significant. The hypothesis
of only two common factors in the two batteries must therefore be rejected.
] This suggests that there are factors specific to each battery but common to
two or more tests within the battery. It is therefore postulated that there
: are four factors in the two batteries, that the first two are interbattery
factors, that the third is specific to battery 1 and that the fourth is specific

to battery 2. The two battery specific factors are postulated to be uncor-

! related and uncorrelated with the two interbattery factors. Otherwise they

=0.80

X° = 6.73 with 10 degrees of freedom

P = 0.75
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would contribute to correlations between tests and hence not be battery
specific. In addition we arbitrarily set the correlation between factors 1 and
2 equal to zero. The maximum likelihood solution under the above restric-
tions is given in Table 3a. This solution has acceptable fit, thus confirming
the hypothesis that correlations between and within the two batteries can be
accounted for by four factors with the above structure. It should be noted
that this solution, regarded as a solution for all the nine tests, is a restricted
orthogonal nonunique solution. It is restricted because too many restrictions
have been imposed on factors 3 and 4, and it is not unique because too few
restrictions have been imposed on factors 1 and 2. The latter can be rotated,
orthogonally or obliquely, without changing the former. For example, such a
rotation ean be done to give two correlated interbattery factors with one
zero loading for each factor. An example of this kind of solution is given in
Table 3b, where test 3 (vocabulary) and test 6 (first letters) have been used
as reference variables. A refinement of this solution, obtained by setting to
zero the small loadings for the interbattery factors, is given in Table 3c.
This imposes additional restrictions, and, as a consequence, factor loadings
for the battery specific factors and the unique variances are changed. The
solution of Table 3¢ fits the data well, and the two interbattery factors can
be interpreted as a word-fluency and a verbal factor. Considering these two
factors only, the first six tests are loaded on only one of them, whereas the
last three are loaded on both. The three loadings Az = 0.14, he = 0.20 and
ho: = 0.14, though small, appear to be significant. If all three are postulated
to be zero, the solution of Table 3d is obtained.

The interbattery factors of Table 3d agree fairly well with the rotated
solution obtained by Tucker [1958], but there are some differences for some
of the loadings. Although battery specific factors may not be of direct inter-
est, this example shows that they may be important in determining the
interbattery factors.

6. The Question of Goodness of Fit

Tt was stated in Section 3 that n times the minimum value of F can be
used as a large sample x* statistic to test the hypothesis that the population
variance-covarinnce matrix Z is of the form (2) with specified values for
certain parameters in A, ®, ¥. Such a hypothesis may be quite unrealistic
in most empirical work with test data. If a sufficiently large sample were
obtained this x* statistic would, no doubt, indicate that any such non-trivial
hypothesis is statistically untenable. The hypothesis of the experimenter
rather is that (2) represents the variance-covariance matrix of the major
factors that the experimenter is interested in, but that there are also a lot of
minor factors which influence the test scores and which the experimenter
has little or no control over [Tucker et al., 1968]. These minor factors cause
the lack of agreement between the formal mathematical model (2) and the
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variance-covariance matrix of the entire population. From this point of view
the statistical problem is not one of testing a given hypothesis but rather one
of fitting models with different numbers of parameters and of deciding when
to stop fitting. The meaning and use of x* in such problems are as follows.
If a value of x° is obtained, which is large compared to the number of degrees
of freedom, this is an indication that more information can be extracted
from the data. One may then try to relax the model somewhat by introducing
more parameters. This can be done by relaxing some restrictions on the
common factor space or by introducing additional factors or both. If, on the
other hand, a value of x” is obtained which is close to the number of degrees
of freedom, this is an indication that the model “fits too well”. Such a model
is not likely to remain stable in future samples and all parameters may not
have real meaning. When to stop fitting additional parameters cannot be
decided on a purely statistical basis. This is largely a matter of the experi-
menter's interpretations of the data based on substantive theoretical and
conceptual considerations. Ultimately the criteria for goodness of the model
depends on the usefulness of it and the results it produces.

Examining the solutions of Table 1 from this point of view, we may say
that for these data the solutions of Tables 1a, b, ¢, f, g are examples of over-
fitting whereas the solution of Table 1d is too restrictive. The solution of
Table 1e represents a reasonable compromise. For the other data, the solution
of Table 3d is the most reasonable, the other three solutions being fitted too
well.
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Author’s Addendum
February, 1979

In this article, written in 1967, I quoted Howe (1955) and gave two con-
ditions for the uniqueness, under factor rotation, of a factor matrix A con-
taining specified fixed elements. Howe (1955) gave these conditions for the
case of fixed zero elements, but I was assuming that they would be valid also
for the case of nonzero fixed elements. However, this has been shown to be
incorrect by Jennrich (1978). Also, in trying to formulate the conditions for
orthogonal and oblique solutions at the same time, I made a mistake, so that
Howe’s formulation in the oblique case with fixed zero elements is incorrectly
stated in my article. To clarify the issues it seems best to consider the four
cases separately: (i) orthogonal solution with fixed zero elements, (ii) or-
thogonal solution with arbitrary fixed elements, (iii) oblique solution with
fixed zero elements, (iv) oblique solution with arbitrary fixed elements.
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Case (i) was considered by Dunn (1973) who gave a counterexample to
show that the original condition, given by Howe (1955) and correctly quoted
by me, is not sufficient. He also stated and proved a substitute condition for
sufficiency. In Dunn’s counterexample there are two columns of A with fixed
zeroes in the same rows. Such a A cannot be unique, since it can be rotated
orthogonally in the plane of these two columns without affecting the fixed
zero elements.

Case (ii) was considered by Jennrich (1978) who gave an example of two
orthogonally equivalent A-matrices with k (k — 1)/2 fixed nonzero elements.
These two A-matrices have different elements in the nonfixed positions and
hence are transparently different. In case (i) Dunn’s conditions are sufficient
for uniqueness up to column sign changes. Thus the specification of fixed
zero elements does not lead to uniqueness but to a transparent form of unique-
ness (column sign changes). However, when the specified values are not neces-
sarily zero, one may be led to much less transparent forms of nonuniqueness.
In both cases the specification of k (k — 1)/2 loadings reduces the .:mﬁ_nnﬁ.,
minacy of A considerably, from an infinite number of solutions to 2 solu-
tions. This suggests that while one may not obtain unique solutions using
k (k — 1)/2 specified values, one will probably obtain solutions that are at
least locally unique; indeed, one usually sees computer confirmation of this in
the form of a positive definite information matrix.

Case (iii) is by far the most interesting case in practice, and I shall therefore
restate and prove the original sufficiency conditions given by Howe (1955).

(a) Let @ be a symmetric positive definite matrix with diag® =L
(B) Let A have at least k — 1 fixed zeroes in each column.

(7) Let Ag have rank k—1, where A, s =1,2, ..., k, is the submatrix
of A, consisting of the rows of % which have fixed zero elements in
the sth column.

Then conditions a, 8, and 7y are sufficient for uniqueness of A.

The fixed unities in the diagonal of ® merely fix the unit of measurement
of the factors. An alternative way of doing this is to fix one nonzero value in
each column of A instead. Conditions a and B are therefore equivalent to

(6) A has at least & — 1 fixed zeroes in each column and one fixed non-
zero value in each column, the latter values being in different rows.

I shall prove that conditions & and vy are sufficient to define A uniquely.
Let B = AT, where T is an arbitrary nonsingular matrix of order k % k. Ishall
prove that if B has the same fixed elements as A and if conditions § and 7y
hold, then T must be an identity matrix. Let >.un be the submatrix of A con-

sisting of the rows of A that have fixed elements (including the fixed nonzero
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value) in the sth column. This is of the order m¢ + 1 by k, where m, is the
::5.53*& fixed zeroes in column s. With a suitable permutation of the rows
of A, Ag will be of the form

I v

0

As)

K .

where a is the fixed nonzero value in column s, \'is a row vector of the re-
maining k& — 1 values in the same row as a and Ay of order mg by £ — 1 is
the matrix >.q with the zero column omitted. %Lnn B has the same fixed
values as A, we must have

o -1
a

0

A= ) (1.41)

1

where t, = (ty¢

to,)" is the sth column of T. Equation (1) is equivalent to

aty; +N'tgg =2 (1.42)
>T.VHMM =0 :.a‘mw

Since m¢ > k — 1 and A, has rank k — 1, the omission of the zero column of
A, will not change the rank. So the rank of >? is also & — 1. Therefore
the only solution for to¢ satisfying (2a) is tgg = 0. With to. = 0 and a # 0,
(2a) implies that t;, = 1. Hence t; is equal to a column of the identity matrix.
The condition that the fixed nonzero values in A are in different rows will
guarantee that a different column tg will be obtained fors =1, 2, . .., k.
Hence T=1L

It is obvious that the same conclusion does not follow if the fixed zeroes

in (1) are replaced by fixed nonzero values. In view of the results in case (ii)
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it is clear that much more research need to be done in case (iv) in order to
clarify the issues and resolve the identification problem.
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