Further Practical Issues

Specifying Time Scores For
Quadratic Growth Models

Quadratic growth model
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* Need three latent variables to describe a quadratic growth
model: Intercept, linear slope, quadratic slope
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Specifying Time Scores For Non-Linear
Growth Models With Fixed Time Scores

Non-Linear Growth Models with Fixed Time scores
* Need two latent variables to describe a non-linear growth

model: Intercept and slope

Growth model with a logarithmic growth curve--In(t)
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Outcome

Time

Time scores: 0 0.69 1.10 1.39

Specifying Time Scores For Non-Linear

Growth Models With Fixed Time Scores (Continued)

Growth model with an exponential growth curve—

exp(t-1) - 1
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Outcome

Time

Time scores: 0 1.72 6.39 19.09




Piecewise Growth Modeling

Piecewise Growth Modeling

Can be used to represent different phases of development
Can be used to capture non-linear growth

Each piece has its own growth factor(s)

Each piece can have its own coefficients for covariates
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One intercept growth factor, two slope growth factors
0 1 2 2 2 2 Time scores piece 1
0 0 0 1 2 3 Time scores piece 2




Piecewise Growth Modeling (Continued)
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Two intercept growth factors, two slope growth factors
0o 1 2 Time scores piece 1
0 1 2 Time scores piece 2
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Input For LSAY Piecewise Growth Model
With Covariates

MODEL : i s1 | math7@0 math8@1 math9@1l mathl0@2;
i s2 | math7@0 math8@0 math9@1l mathl0@1;
i s1 s2 ON mothed homeres;

Alternative language:

MODEL : i BY math7-mathl10@1;
sl BY math7@0 math8@1 math9@1 mathl0@2;
s2 BY math7@0 math8@0 math9@1 mathl0@1;
[math7-math10@0] ;
[i s1 s2];
i sl s2 ON mothed homeres;

Output Excerpts LSAY Piecewise Growth Model
With Covariates

n = 935

Tests of Model Fit

CHI-SQUARE TEST OF MODEL FIT

Value 11.721
Degrees of Freedom 3
P-Value .0083

RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION)
Estimate .056

90 Percent C.1I. .025 .091
Probability RMSEA <= .05 .331

10




Output Excerpts LSAY Piecewise Growth Model
With Covariates (Continued)

Selected Estimates

Estimates S.E. Est./S.E. Std StdyX

1 ON
MOTHED 2.127 .284 7.488 .266 .256
HOMERES 1.389 .185 7.524 174 .257

S1 ON
MOTHED -.126 .147 -.858 -.113 -.109
HOMERES .091 .096 .950 .081 .120

S2 ON
MOTHED .436 .191 2.285 .185 .178
HOMERES .289 .124 2.329 .123 .181
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Growth Model With Individually-Varying Times
Of Observation And Random Slopes
For Time-Varying Covariates
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Growth Modeling In Multilevel Terms

Time point ¢, individual i (two-level modeling, no clustering):

repeated measures of the outcome, e.g. math achievement
a,,; : time-related variable; e.g. grade 7-10

time-varying covariate, e.g. math course taking

X; : time-invariant covariate, e.g. grade 7 expectations

Two-level analysis with individually-varying times of observation and
random slopes for time-varying covariates:

Level 1y, =my; t my; ay, + Ty ay t ey, (55)

7 o= Boo T Bor xi T 1o
Level 2: Ty :ﬁm +ﬁ11xi+rli’ (56)

T = Pag + By X; 1y
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Growth Modeling In
Multilevel Terms (Continued)

Time scores a,, read in as data (not loading parameters).
* 7,,; possible with time-varying random slope variances

* Flexible correlation structure for V' (¢) =@ (T'x 1)
* Regressions among random coefficients possible, e.g.

;=B T 71 To TSy X Ty, (57)
3 = fag T 72 oy T By X; 1y (58)
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Input For Growth Model With Individually
Varying Times Of Observation

TITLE: Growth model with individually varying times of
observation and random slopes
DATA: FILE IS Isaynew.dat;

FORMAT 1S 3F8.0 F8.4 8F8.2 3F8.0;

VARIABLE: NAMES ARE math7 math8 math9 mathlO crs7 crs8 crs9
crsl0 female mothed homeres a7-all;

1 crs7-crsl1l0 = highest math course taken during each
I grade (0O=no course, 1l=low, basic, 2=average, 3=high.
1 4=pre-algebra, 5=algebra I, 6=geometry,
1 7=algebra 11, 8=pre-calc, 9=calculus)

MISSING ARE ALL (9999);
CENTER = GRANDMEAN (crs7-crs10 mothed homeres);
TSCORES = a7-al0;
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Input For Growth Model With Individually
Varying Times Of Observation (Continued)

DEFINE:

ANALYSIS:

MODEL :

OUTPUT:

math7 math7/10;
math8 math8/10;
math9 math9/10;

mathl0 = mathl10/10;

TYPE = RANDOM MISSING;
ESTIMATOR = ML;
MCONVERGENCE = .001;

i s | math7-mathl0 AT a7-al0;
stvc | math7 ON crs7;

stvc | math8 ON crs8;

stvc | math9 ON crs9;

stvc | mathl0 ON crsi10;

i ON female mothed homeres;

s ON female mothed homeres;
stvc ON female mothed homeres;
i WITH s;

stvc WITH i;

stvc WITH s;

TECHS;
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Output Excerpts For Growth Model With
Individually Varying Times Of Observation
And Random Slopes For Time-Varying Covariates

n = 2271

Tests of Model Fit

Loglikelihood

Information Criteria

HO Vvalue -8199.311
Number of Free Parameters 22
Akaike (AIC) 16442 .623
Bayesian (BIC) 16568.638
Sample-Size Adjusted BIC 16498.740

(n* = (n +2) /7 24)
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Output Excerpts For Growth Model With Individually
Varying Times Of Observation And Random Slopes
For Time-Varying Covariates (Continued)

Model Results

) ON Estimates S.E. Est./S.E.
FEMALE 0.187 0.036 5.247
MOTHED 0.187 0.018 10.231
HOMERES 0.159 0.011 14.194

S ON
FEMALE -0.025 0.012 -2.017
MOTHED 0.015 0.006 2.429
HOMERES 0.019 0.004 4.835

STVC ON
FEMALE -0.008 0.013 -0.590
MOTHED 0.003 0.007 0.429
HOMERES 0.009 0.004 2.167

1 WITH
S 0.038 0.006 6.445

STVC WITH
1 0.011 0.005 2.087
S 0.004 0.002 2.033 19

Output Excerpts For Growth Model With Individually
Varying Times Of Observation And Random Slopes
For Time-Varying Covariates (Continued)

Intercepts
MATH7 0.000 0.000 0.000
MATH8 0.000 0.000 0.000
MATH9 0.000 0.000 0.000
MATH10 0.000 0.000 0.000
| 4.992 0.025 198.456
S 0.417 0.009 47.275
STVC 0.113 0.010 11.416

Residual Variances
MATH7 0.185 0.011 16.464
MATH8 0.178 0.008 22.232
MATH9 0.156 0.008 18.497
MATH10 0.169 0.014 12.500
1 0.570 0.023 25.087
S 0.036 0.003 12.064
STVC 0.012 0.002 5.055 20




Random Slopes

* In single-level modeling random slopes /3; describe variation across
individuals i,

vi=a+pix te, (100)
a; = o+t ¢y, (101)
Bi=p+ G (102)
Resulting in heteroscedastic residual variances
Vil x)=V(B) x; +0 (103)

* In two-level modeling random slopes /3, describe variation across
clusters j

Yy = @ty xy t ey, (104)
a;=a+{y, (105)
Bi=p+ ¢y (106)

A small variance for a random slope typically leads to slow convergence of the
ML-EM iterations. This suggests respecifying the slope as fixed.

Mplus allows random slopes for predictors that are
* Observed covariates
* Observed dependent variables

e Continuous latent variables 21

Computational Issues For Growth Models

* Decreasing variances of the observed variables over time may make the
modeling more difficult

» Scale of observed variables — keep on a similar scale

+ Convergence — often related to starting values or the type of model being
estimated

* Program stops because maximum number of iterations has been reached

* If no negative residual variances, either increase the number of
iterations or use the preliminary parameter estimates as starting values

« If there are large negative residual variances, try better starting values

* Program stops before the maximum number of iterations has been
reached

* Check if variables are on a similar scale
* Try new starting values
+ Starting values — the most important parameters to give starting values to are
residual variances and the intercept growth factor mean
+ Convergence for models using the | symbol

» Non-convergence may be caused by zero random slope variances which

indicates that the slopes should be fixed rather than random
22
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