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Multiple-group structural modelling with
non-normal continuous variables

Bengt Muthén
Graduate School of Education, University of California, Los Angeles, CA 90024, USA

An estimator is considered for mean and covariance structure analysis of
non-normal continuous variables. This estimator extends the ADF estimator
of Browne (1982, 1984) to include structured means. The behaviour of the
estimator is compared to that of normal-theory generalized least-squares in
simulated data. .

1. Introduction

Simultaneous factor analysis in several groups has been treated by Joreskog (1971)
and Sorbom (1974). These authors studied maximum likelihood estimation under
multivariate normality, testing various forms of invariance across groups by means of
chi-square. In this paper we are concerned with non-normal, continuous variables
which are common in social science data. In recent years there has been an increasing
interest in the robustness of multivariate hypothesis testing to deviations from
normality; see, for instance, Ito (1969) and Mardia (1970, 1971, 1974). Often tests
on means are found to be rather robust, whereas tests involving covariances are less
robust (see, for example, Mardia, 1971). More recently, Browne (1982, 1984) has
suggested generalized least squares covariance structure estimators for non-normal
data. Here we study one such type of estimator as it applies to the multiple-group
structural modelling situation. It is shown that the normal theory approach gives
unduly large chi-square values as compared to the present approach, when testing
invariance hypotheses.

2. Preliminaries

While Joreskog and Sorbom studied maximume-likelihood (ML) estimation, we will
briefly describe their approach as it applies to generalized least squares (GLS)
estimation under multivariate normality. In the large sample situations we will be
concerned with, the ML vs. GLS difference is negligible, since these estimators are
asymptotically equivalent (Browne, 1974).

Consider a random vector of variables y (p x 1), observed in group (population) g,

y(g) =vy9 4 A(a)”(g) + 8("), ' (1)
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where v@(p x 1) is a vector of location parameters, A¥(p x m) is a matrix of regression
(loading) parameters, n“(mx 1) is a random vector of latent variables (factors), and
£9(p x 1) is a vector of residuals with covariance matrix 0,

Consider the structural equations

79 =0 4 BOy@ 4 (@ )

where a®(m x 1) is a vector of intercepts, B¥(m x m) is a matrix of slopes for which
I—B®@ is non-singular, and (® is a random vector of residuals with covariance
matrix ¥, Ordinary assumptions give (cf. Muthén, 1984)

E( y(y)) =y 4+ A(g)( I— B(y)) 149 (3)
V( y(y)) = A(”)( I— B(g)) - 1\11(9)( I— B(a))' —1A + 09, (4)

Furthermore, for each group g, let ¢'®(p x 1) denote the vector valued function of
the mean vector parameters given in (3), and ¢¥(p(p+1)/2x 1) the vector valued
function corresponding to the distinct covariance matrix elements of (4). Let
09 =(0¥'¢Y¥"). Assuming multivariate normality and independent random sampling
from G groups, Joreskog and Sorbom used the mean vectors and covariance matrices
in the groups in order to estimate the model parameters. For each group, let
s$®(px1) and sP(p(p+1)/2x1) denote these mean and covariance elements,
respectively. Let 5@ =(s©'s§").

As applied to GLS, the Joreskog-Sorbom approach results in minimizing the
fitting function (cf. Muthén, 1983, and references therein)

G .
F= Z ( s _ a(g))' we@ - 1( s9 a(g)), ( 5)

g=1

with respect to the model parameters. Here, W is chosen as a consistent estimator
of the asymptotic covariance matrix of s. Let W be partitioned according to s,

W) symm.
wo=| """ : 6
[W(zgi wY) (©

Under multivariate normality, W =N@~18@ W¢$) =0, and W¥=K(S® x S?)K’
where N@ is the sample size in group g, S® is the sample covariance matrix, and K
is a constant matrix selecting elements (see, for example, Browne, 1974; Kendall &
Stuart, 1977).

Let the vector of all parameters be denoted 6(sx1). A particular hypothesis
considers restrictions on 6 so that there are only r free and distinct parameters to be
estimated. Of particular interest in multiple-group situations are hypotheses regarding
equality of certain 6-parameters from different groups, especially

VD =y @ = = O 0)

iy
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AV =A@ _... =A(G)=A, (8)

implying measurement parameter invariance (see, for example, Sorbom, 1974). Let ¢
denote the total number of elements in the ¢@'s, t=G(p+ p(p+1)/2). It follows that
any such hypothesis can be tested by the value F, of (5), calculated at the minimum,
since, asymptotically, F, follows a chi-square distribution with t—r degrees of
freedom (see, for example, Browne, 1974, 1982).

In a single-group (G=1) covariance structure context, Browne (1982, 1984)
considered the GLS type fitting function

F=(S2_02),W~1(52—62)9 )]

where in this case the elements of W represent a consistent estimator of the
asymptotic covariance matrix of s, using

N-1
(N—=1)cov(s;j, Si) =040+ 0405 +_N— Kijki- (10)

Under normality of y, the fourth-order cumulants, «;;, of (10) would all be zero and
Wy of (6) would obtain the simple Kronecker structure given beneath (6). In
Browne’s approach, the normality assumption is avoided. We will use Browne’s name
for this estimator: ADF (‘asymptotically distribution free’). For details on the ADF
estimation including its asymptotic behaviour, see Browne (1982, 1984).

3. Multiple-group ADF

The ADF approach would seem to be directly applicable to the multiple-group
problem outlined above. Since W) of (6) does not change when the normality
assumption is relaxed, it only remains to find WY¥), i.. a consistent estimator of the
asymptotic covariances between s, and s,, which are no longer zero.

Let y; denote the mean variable i, and

#ijk=E()’i‘l‘i)()’j‘#j)()’k—#x), (11)
a multivariate third-order moment about the mean. We note that
Hijk = Kijks (12)

where k5 is a third-order cumulant (cf. Kendall & Stuart, 1977; Kaplan, 1952).
Asymptotically, - '

N cov [(s2), (51 )] = Kijks (13)

where the i,j subscript on the s, vector refers to one of its p(p+1)/2 distinct
covariance matrix elements and the k subscripts on the s, vector refers to one of its p
elements.
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A consistent estimator of the s,,s; covariance matrix is formed as follows (cf.
Mooijart, 1985). Consider the p-dimensional vector y* for observation i,

)’?'=(}’11"f1---)’pi“}-’p), (14)

where 7; is the sample mean of y; and creates the p(p+ 1)/2-dimensional vector a;,
a;= * iy y3* vy *yivu
e VpiVp-1.iYpiYp0): (15)

For each group g, &életing the group index, we may then create W,, as
N
W, =N~2 z a;yt, (16)
i=l

where N is the sample size for this particular group.

Above we have defined W for each group g in the expression for the fitting
function F in (5). With this choice of W, we may term this GLS type estimation
‘multiple-group ADF’. The asymptotic properties of this estimator are analogous to
those of the single-group ADF, described by Browne (1982, 1984). Note that for each
group the sample size must be larger than p+p(p+1)/2 to ensure a non-singular W@,
Fortunately there is a programmed algorithm available for finding the minimum of F
given a specific model structure of the kind considered here. This is the LISCOMP
program (Muthén, 1987; see also Muthén, 1984). A fitting function such as in (5) is
considered, where a suitable weight matrix can be read by the program. In addition
to parameter estimates, an asymptotic chi-square measure of model fit and
asymptotic standard errors of the estimates are produced. ’

4. Applying multiple-group ADF

Simulated, non-normal data will now be considered in order to study the behaviour
of the multiple-group ADF as compared to the normal theory GLS for multiple
groups. For each of two groups, the random data generation was as follows. A factor
model for nine observed variables and three correlated factors was chosen with three
indicators per factor and a simple measurement structure. Parameter values are given
in Table 2. To reflect commonly observed data in the social and behavioural sciences,
each observed variable was chosen to be discrete with ten scale steps scored 0 to 9,
where for simplicity the variables were taken to have equal univariate distributions.
In the population the category percentages for each variable were chosen to give a
sizeable skew and kurtosis: 2%, 2%, 2%, 2%, 2%, 3%, 5%, 14%, 51%, 17%. This choice
resulted in a univariate skew and kurtosis of 2.11 and 4.10 respectively. The
population means were all 7.25, the variances 3.91, and the correlations were 0.39 and
0.18 for variables within and between factors, respectively. Multivariate normal
variables were used to generate the observed variables by categorization, yielding the
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Table 1. Chi-square model: v and A invariant. All variables have equal skew. Degrees
of freedom =60

Case 1 Case 2

N, 1050 700
N, 1050 1400
ADF
Mean 64.07 64.31
Variance 125.71 140.83
Reject freq. 9 11
GLS
Mean 8491 85.16
Variance 225.09 261.30
Reject freq. 65 62
Mean and variance are calculated from 100 replications. Reject freq. gives the number of times the chi-sq statistic ded the 5 per cent

critical value (79.1).

Table 2. Parameter estimates®. Case 1: N,=1050, N,=1050. Model: v and A
invariant. All variables have equal skew .

ADF GLS
Parameter True value Groupl1 Group2 Groupl Group 2
Intercept v 7.254 7.304 inv. 7.256 inv.
(0.7)® (0.0)

Loading A 1.000 1.003 inv. 1.003 inv.
Error 0 2.380 2.236 2.231 2.329 2.325
variance (—6.2) (—6.3) (=21 (—-23)
Factor Vii 1.530 1.446 - 1.449 1.521 1.524
variance (—5.5) (—5.29) (—0.59) (=04
Factor ¥ij 0.712 0.633 0.632 0.697 0.698
covariance (—11.1) (—112) (=211 (=20
Factor mean « 0.000 fixed 0.004 fixed 0.003

. “Parameter estimates are the average of the free parameters within parameter types.

®Per cent over- or underestimation relative to the true value.

above features. The two groups were taken to have the same parameter values. This
means that (3), (4), (7), and (8) hold for these data.

Two cases were studied. In Case 1, 1050 random observations were taken in both
groups, while for Case 2, 700 and 1400 observations were chosen, respectively. The
use of unequal sample sizes in the two groups would seem to reflect real data
situations. It is also known that tests on covariance matrices are sensitive to unequal
group sizes (see, for example, Mardia, 1971).

The random sampling procedure was repeated 100 times within the LISCOMP
program. For each replication, both the normal theory GLS chi-square and the ADF
chi-square was used to test (7) and (8). The number of degrees of freedom for this
hypothesis is 60. The results on chi-square are given in Table 1. It is seen that the
ADF chi-square results are closer to expectation than the GLS chi-square results.

Tables 2 and 3 give the parameter estimates for Cases 1 and 2. ADF shows a

st
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Table 3. Parameter estimates®. Case 2: N, =700, N, =1400. Model: v and A invariant.
All variables have equal skew

ADF GLS
Parameter True value Group1 Group2 Groupl Group 2

Intercept v 7.254 7.332 inv. 7.259 inv.

: (1.1 0.1)
Loading A 1.000 - 1.001 inv. 1.002 inv.

0.1) (0.2)

Error 0 2.380 2.168 2.269 2.308 2.336
variance (—8.9) (-4.7) (—=3.0 (—1.8)
Factor Vi 1.530 1.393 1.477 1.508 1.531
variance (=90 (-39 (—14) (—0.1)
Factor i) 0.712 0.595 0.652 0.690 0.700
covariance (—16.4) (—8.4) (=31 (—=0.2)
Factor mean « 0.000 fixed —0.039 fixed —0.001

“Parameter estimates are the average of the free parameters within parameter types.
bPer cent over- or underestimation relative to the true value.

Table 4. Sampling variability’. Case 1: N,=1050, N,=1050. Model: v and 4
invariant. All variables have equal skew )

ADF GLS

Parameter Groupl Group2 Groupl Group 2
Intercept v 0.052 inv. 0.054 ~inv.
0.057 - inv. 0.054 inv.
Loading A 0.074 inv. ~ 0.056 inv.
0.080 inv. 0.074 inv.
Error 0 0.193 0.193 0.140 0.140
0.203 0.201 0.216 0.220
Factor 1/ 0.190 0.191 0.142 0.143
variance 0.198 0.216 0.193 0.213
Factor Vi 0.096 0.095 0.081 0.081
covariance 0.107 0.096 0.105 0.100
Factor mean « fixed 0.064 fixed 0.066

0.070 0.066

“The two entries are:
mean of estimated standard errors;
empirical standard deviations of estimates.

somewhat larger bias than GLS and the bias is larger with unequal sample sizes in
the groups.

Tables 4 and 5 give the sampling variability for Cases 1 and 2. The empirical
variability is somewhat larger overall for ADF than for GLS. At the same time, the
estimated ADF standard errors are closer to the empirical variability than are the
estimated GLS standard errors. .

In conclusion, we find in these examples that normal theory GLS chi-square
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Table 5. Sampling variability’. Case 2: N, =700, N, =1400. Model: v and A invariant.
All variables have equal skew

ADF GLS
Parameter Groupl Group2 Groupl Group 2

Intercept v 0.060 inv. 0.064 inv.
0.067 inv. 0.062 inv.

Loading A 0.074 inv. 0.056 inv.
0.079 inv. 0.074 inv.

Error 0 0.220 0.177 0.167 0.124
0.243 0.184 0.261 0.194

Factor Vi 0.208 0.180 0.159 0.133
variance 0.226 0.197 0.217 0.195
Factor Vi 0.108 0.086 0.096 0.072
covariance 0.128 0.091 0.122 0.089
Factor mean « fixed 0.067 fixed 0.070
0.074 0.069

“The two entries are:
mean of estimated standard errors;
empirical standard deviations of estimates.

testing leads to too frequent rejections and that normal theory GLS standard errors
underestimate actual variability in the estimates. The multiple-group ADF estimator,
however, performs reasonably well.
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