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Achievement modeling is carried out in groups of students characterized by
heterogeneous instructional background. Extensions of item response theory mod-
els incorporate variables reflecting different amounts of opportunity-to-leam (OTL).
The effects of these OTL variables are studied with respect to their influence on
both the latent trait and the item performance directly. Such direct effects may
reflect instructionally sensitive items. U.S. eighth-grade mathematics data from the
Second International Mathematics Study are analyzed. Here, the same test is taken
by students enrolled in typical instruction and students enrolled in elementary
algebra classes. It is shown that the new analysis provides a more detailed way to
examine the influence of instruction on responses to test items than does conven-
tional item response theory.

Standardized achievement testing in most American schools today involves a
heterogeneous group of students. One major source of this heterogeneity at a
given grade level is the difference in instructional experiences of students
(McKnight et al., 1987). It is little wonder that the match between the school
curriculum and what is tested continues to be of concern (e.g., Airasian &
Madaus, 1983; Haertle & Calfee, 1983; Linn, 1983; Schmidt, Porter, Schwille,
Floden, & Freeman, 1983; Leinhardt, 1983; Leinhardt & Seewald, 1981;
Mehrens & Phillips, 1986; Miller, 1986).

The research reported here extends our developments of item response
theoretic methods for achievement of heterogeneous groups of students
(Muthén, 1988, 1989). Within this framework, the present study expands on
efforts to disentangle the influences of ascriptive instructional backgrounds as
they impact estimation of the parameters of the achievement measurement
model. The emphasis here is on how one might model the effects of differences
in instructional backgrounds of students on the resulting achievement latent
trait and observed item difficulties. This work is being reported at a relatively
early phase of the inquiry in order to call attention to what we view to be a
potentially fruitful psychometric method for examining achievement test data
obtained from:students with varying instructional backgrounds. It is hoped that
presentation of the research at this stage will stimulate discussion about the
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applicability of the methodology for research and practice within the domain of
large-scale assessment.

Item Response Theory (IRT) is a common tool for the study of item bias.
Under the IRT model, invariance of measurement parameters is assumed to
hold for different subgroups. Deviations from this assumption are viewed as
item bias. To detect bias, the group membership of the examinees is identified,
and the estimated curves describing the probability of a correct answer for a
given ability level are compared across groups. A large area between curves is
an indication of IRT item bias.

As suggested by Linn and Harnisch (1981), instructional bias may be mistaken
as bias due to ethnicity. Recent studies have changed the traditional focus on
fathnic and gender biases in achievement tests to instructional bias. For
Instance, Lehman (1986) studied algebra items for eighth-grade students.
Gender and opportunity-to-learn (OTL; Anderson, 1985) in the classroom
were used as grouping variables. Relative to gender, OTL was found to be a
much more important cause of item bias. Miller and Linn (1988) used an
alternative approach to the study of instructional bias. Based on OTL and item
content, cluster analysis was carried out to create curriculum clusters. When
comparing item response curves for the same item across clusters, they found
strong evidence of instructional bias. The magnitude of the instructional bias
was claimed to be larger than that usually found with different ethnic groups.

The Lehman (1986) and Miller-Linn (1988) approaches build on grouping
test takers. The grouping may depend on the sample distribution. There is also
the drawback of basing the estimation of an item’s parameters in a certain
group (cluster) on students that may well have a wide range of OTL. Different
grouping criteria may lead to different conclusions.

Standard IRT techniques assume that instruction increases the item perfor-
mance through an increase in the latent trait level, whereas the item-trait
relationship remains the same. This assumption is usually too strong for groups
of students with widely different content coverage. Certain classes may have
obtained more extensive instruction for specific content areas so that the
performance on the corresponding item types is relatively better than on the
majority of the items for the average student. This is the cause of instructional
item bias. Muthén (1989) pointed out the psychometric problem of traditional
IRT-based item bias detection schemes, showing a misestimation of bias in the
plausible situation of many items’ showing instructional bias. Muthén’s ex-
tended IRT model may serve as a better tool for studying the instructional bias,
or, as we will term it, the instructional sensitivity. His model maintains the form
of an IRT model but in addition has parameters that quantify the extent of the
effect attributed to OTL. Using similar modeling, Muthén (1988) also consid-
ers other educational and social student background information as predictors
of item response. As Mislevy (1987) indicated, “what IRT models miss are
these systematic differences among examinees performing at the same general
level” (pp. 261-262). The assumptions of IRT that preclude the influences

from auxiliary variables are challenged and examined in Muthén’s model.

Muthén’s model may be briefly described as follows. Building on his own
statistical theory (1984), Muthén (1988) proposed a new extension of IRT
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modeling that controls for student background differences by including back-
ground variables as covariates. Further extending this methodology, Muthén
(1989) proposed a method for explicitly including item-specific information on
instructional differences, allowing for OTL effects on performance not only
through an increase in trait level but also directly. This model parameterization

essentially allows for several difficulty levels for each item corresponding to

different instructional classifications. In this way, the deficiency of traditional
IRT bias detection techniques is avoided. The instructional heterogeneity of
the students is taken into account, and any differential instructional effects on
the item difficulty parameters can be directly estimated.

The Muthén (1989) technique for detecting instructionally sensitive items
was illustrated with a very small set of eight algebra items from the U. S. sample
of eighth graders in the Second International Mathematics Study (SIMS;
Crosswhite, Dossey, Swafford, McKnight, & Cooney, 1985). The aim of this
article is to apply the technique to detect instructional sensitivity in a more
realistic setting, using the SIMS set of 40 core items for U.S. eighth graders.
This set contains items covering algebra, arithmetic, geometry, and measure-
ment. By this analysis, it is hoped that types of items that are particularly
susceptible to instructional sensitivity in this context can be discerned. Such
items may be less suitable to activities of broad assessment of more stable traits
but may be of primary interest for achievement assessment. The achievement
measurement process can be improved by better understanding the link
between item types and instruction in this way. Furthermore, item analysis by
standard IRT techniques would ignore instructionally sensitive items and result
in biased estimates of measurement parameters.

The Data

In brief, the SIMS data features are as follows. A national probability sample
of school districts was selected proportional to size; a probability sample of
schools was selected proportional to size within the school district; and two
classes were randomly selected within each school yielding a total of about 240
schools and about 7,000 students measured at the end of Spring 1982. The
achievement test contained 180 items in the areas of arithmetic, algebra,
geometry, and measurement distributed among four test forms. Each student
responded to a core test (40 items) and one of four randomly assigned rotated
forms (34 or 35 items). All items were presented in a five-category multiple
choice format.

In the analysis that follows, a key piece of instructional information was
OTL. Teachers rated items for student OTL. For this study, OTL was defined
as whether the math needed to answer this item correctly was taught this year
or in prior years.

The percentage distribution of OTL categories for all 40 items are given in
Table 1 together with proportion correct for each test item. It seems that the
percentage of students having no opportunity-to-learn (NTL) varies greatly
across the items. With the exception of five items, having had OTL is most
common. However, about 1/3 of the items show NTL proportions larger than
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Table 1

Proportions and Effect Comparisons for OTL Categories

Overall Proportions for OTL effects
proportion OTL categories?® beta coefficients

Item correct OTL NTL D values
1 .43 .79 .21 .25
.47 .26 .12
2 .60 .97 .03 -.01
.61 .53 -.01
3 .21 .62 .38 .38
.28 .09 .19
4 .33 .87 .13 -.04
.34 .26 -.02
5 .44 .93 .07 .28
.45 .30 .14
6 .55 .72 .28 -.08
.55 .54 -.04
7 .66 .31 .69 .15
.68 .66 .08
8 .89 .83 .17 .05
.89 .88 .03
9 .52 .86 .14 - -.01
.53 .48 -.01
11 .31 .60 .40 -.04
.35 .26 -.02
12 .44 .90 .10 .15
.44 .40 .08
13 .71 .88 .12 -.02
.73 .59 -.01
14 .61 .85 .15 -.00
.63 .53 -.00
15 .32 .90 .10 .04
.32 .28 .02

(table continues)

0.33. It is also seen that the proportion correct varies greatly over the different
OTL categories. These are clear indications of the student heterogeneity.

The use of the dichotomously scored, teacher-reported OTL in our model is
noteworthy. Mehrens and Phillips (1986) used textbook series and school
personnel ratings to study the influence of the match between what was taught
and what was tested for reading and math scores in Grades 3 and 6. As
Leinhardt and Seewald (1981) pointed out, the two most common approaches
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Table 1 (continued)

Overall Proportions for OTL effects
proportion OTL categories? beta coefficients
Item correct OTL NTL D values
16 .58 .94 .06 .41
.60 .16 .20
17 .59 .87 .13 .59
.62 .38 .32
18 .51 .80 .20 .16
.56 .29 .08
19 .33 .24 .76 .08
.39 .32 .04
20 .77 .98 .02 -.37P
.11 .60 -.17b
21 .34 .40 .60 .10
.39 .30 .04
22 .59 ' .87 .13 .22
.64 .26 .10
23 .47 .81 .19 .02
.51 .30 .01
24 .57 .93 .07 .05
.58 .36 .02
25 .46 .94 .06 -.05
.47 .34 -.02
26 .62 1.00 --C .
.62 - -
27 .57 .47 .53 -.01
.64 .50 -.01
28 .62 ! .91 .09 -.02
.63 .49 -.01
29 .75 .90 .10 .04
.77 .60 .02

(table continues)

to the measurement of overlap between what is tested and what is taught are
instructional-based and curriculum-based measurement.

In the SIMS, student-reported item-specific OTL is also available. Both
teacher- and student-reported OTL is presumably fraught with error. Teach-
ers’ reporting may not be relevant for a student who was absent from or did not
understand the instruction. A student’s reporting may partly refelct his or her
perception of the item difficulty. The two ways of reporting are not highly
correlated (Lehman, 1986). We feel that the teacher-reported OTL is more
trustworthy.'
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Table 1 (continued)

Overall Proportions for OTL effects
. proportion OTL categories@ beta coefficients

Item correct OTL NTL D values
30 .40 .48 .52 -.05
.45 .36 -.03
31 .62 1.00 --C -
.62 - -
32 .45 1.00 --C -
.62 - -
33 .50 .95 .05 .06
.51 .33 .03
34 .39 .96 .04 -.41
.40 .19 -.18
© 35 .59 .71 .29 .24
.65 .44 .13
36 .56 .93 .07 .22
.57 .38 .10
37 . .37 .85 .15 .03
.40 .23 .01
38 .51 .97 .03 .74
.52 .23 .34
39 .54 .70 .30 .67
.63 .33 .35
40 .47 .53 .47 .21
.52 .41 .11

@Entries are proportion of students and proportion correct.

?Esgiggte is not dependable due to small category proportion
<=0.02).

CNo students are available in the NTL category.

In addition to the above item-specific OTL information, instructional back-
ground information common to all items is available in the SIMS in the form of
a classification of each mathematics class into one of four types: basic or
remedial arithmetic (REMEDIAL), general or typical mathematics (TYPI-
CAL), pre-algebra or enriched (ENRICHED), and algebra (ALGEBRA).
This classification is based on teacher questionnaire data and on information
on textbooks used. '

In the SIMS data, there is also available a set of background variables for
each student measured during the fall of eighth grade. These variables include
pretest measurements of mathematics, family background, educational aspira-
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tion, attitudes toward mathematics, gender, and ethnicity (see Table 2 and
Muthén, 1988).

The premeasurements were collected for only part of the sample. But the
analysis considers a total number of 3,724 students who had complete observa-
tion on both fall and spring measurements in this set. This analysis sample
involves 198 classes.

Table 2

Description of Background Variables

PREALG: Proportion of correct responses on seven pre-test core
items.

PREMEAS: Proportion of correct responses on seven pre-test core
items.

PREGEOM: Proportion of correct responses on eight pre-test core
items.

PREARITH: Estimated pre-test theta based on the three-parameter

logistic model using 16 items.

FAED: The highest type school attended by father or male
guardian.

very little schooling, or no schooling at all
primary school

secondary school

college, university, or some form of tertiary
education

1
2
3
4

MOED: As in FAED, but for respondent's mother or female
guardian.

MORED: Responses to the question, "After this year, how many
more years of full-time education (including
university, college, etc.) do you expect or plan to

complete?"

none at all (0 years)

up to 2 years

more than 2 years - up to 5 years
more than 5 years - up to 8 years
more than 8 years

U WN
nnnn

Average score of four attitude items scored: Strongly
disagree (1), Disagree (2), Undecided (3), Agree (4),
and Strongly agree (5). These items are:

USEFUL:

1. I can get along well in everyday life without
using mathematics (Reversed).

2. A knowledge of mathematics is not necessary in
most occupations (Reversed).

3. Mathematics is not needed in every day living
(Reversed) .

4. Most people do not use mathematics in their jobs

(Reversed) .
(table continues)
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Table 2 (continued)
ATTRACT: Average scores of five attitude items. Scoring is as
for USEFUL and the items are:

1. I would like to work at a job that lets me use
mathematics.

I think mathematics is fun.

Working with numbers makes me happy.

I am looking forward to taking more mathematics.
I refuse to spend a lot of my own time doing
mathematics (Reversed).

ndWwhN

Ethnicity dummy coding (0 = White)l: NONWHITE
Class type dummy coding (0 = Typical class): REMEDIAL
ENRICHED
ALGEBRA
Gender dummy coding (0 = Male): FEMALE
Father's occupation dummy coding (0 = Middle)2: LOwOoCC
HIGHOCC
MISSOCC

Notes:

1. The non-white category consists of American Indian, Black,
Chicano, Latin, Oriental, and Other.

2. The LOWOCC category of Father's occupation consists of the
classifications Unskilled and Semi-skilled worker, the Middle
category consists of Skilled worker, clerical, sales and
related, the HIGHOCC category consists of Professional and
Managerial, and the MISSOCC category consists of no response
and unclassifiable response.

The Model

Following Muthén (1989), detection of instructionally sensitive items among
the set of items is achieved by estimation of the following model. A diagram-
matic representation of the model is given in Figure 1. The model will first be
described in words and then statistically.

The mathematics trait in the spring of eighth grade is an unobserved
continuous variable that is measured by, or in other words, predicts, the set of
test items. This trait will alternatively be called math ability or achievement level,
although a more careful distinction is no doubt desirable when discussing a
trait for students with varying OTL. Muthén (1989) suggests the term latent

performance level. We want to study the effect of OTL on the item performance
because it is possible that having OTL enhances the specific skills needed to
solve the corresponding item correctly. Adding these variables as predictors,
the modeling has to recognize that math ability in the spring is an endogenous
variable relative to the OTL variables. The OTL variables predict the item
performance but also determine a part of the math ability level itself. To
correctly model the prediction of spring math ability, it then becomes necessary
to specify a more comprehensive set of predictors for math ability, where item
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FALL SPRING

PRETESTS
ATTITUDES
FAM. BKGRD

DEMOGRAPHICS ~ X \MATH
CLASS TYPE ———% ABILITY

OTL 1 _——
B

A

Y ITEM 1

OTL 40 » |TEM 40

FIGURE 1. Model for assessing instructional item sensitivity

OTL influences on math ability are specified as partial effects, holding other
background variables constant. '
Spring math ability is taken here to be predicted by fall pretests, attlt}ldcs,
family background, demographics, class type, and OTL. These predictors
influence the math ability variable and thus, indirectly, also the performance on
the test items. All the background variables are assumed to h.ave dir‘ect effects
on math ability. However, the majority of the background variables is assumed
to have only indirect effects on items. .
The OTL variables, however, are also allowed to influence the corresponding
test items directly, although not all items are expected to have such eﬂ“ects.. An'y
such effect would be an influence of OTL over and above that which is
transferred via the math ability. Hence, the probability of a correct response for
students with different OTL would be different even if they have the same r{lath
ability. This effect implies item bias due to instructional sensitivity in the item
at hand in terms of measuring the math ability trait. This can be s.tated as OTL
not influencing math ability homogeneously across the set (?f.te:st items. .
It is interesting to note that bias due to instructional sensitivity in the items is
assessed here without resorting to traditional item bias detection schemes that
necessitate a classification of students into groups with different OTL. vall{es.
The present analysis avoids the arbitrariness of such groupings in a situation
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where group membership obviously varies across items. The model also pre-
sents a wealth of other relevant information on the achievement process.

Statistically, the model may be presented as follows. An IRT model is
specified for measuring the trait by the set of items. In this analysis, a
two-parameter normal ogive response curve model is chosen for this measure-
ment part (e.g., Lord, 1980). Let us consider the influence of the item-specific
OTL variables, z say, and the student background variables, x say (premeasure-
ments, attitudes, demographics, and clsss type). In our analysis, we will create
an OTL dummy variable for each item J> Z;, representing the two categories of
the OTL levels described in the section entitled The Data. Here, z; = 1
represents OTL. The variables of z and x are assumed to influence the latent
trait variable m, say. We specify the linear regression model

M=vx+yz+ (1)
where x and z are vectors of variables and { is a normally distributed residual
with zero mean, variance ¥, and where { is independent of x and z.

In addition to predicting v, we specify an influence from the z variable for a
certain item to the response for that particular item. Whereas each item’s z
variable influences the item response through the v variable, this part of the
model concerns the direct influence from the z to the item, over and above that

which goes through v. It is convenient to express the direct influence of the z

variables on the items using a latent response variable formulation, where

Y =0,ify*< (2
1, otherwise where T, is a threshold parameter defined on the continuous latent
response variable y*

y'=An+Bz+ €. 3
The latent response variable may be viewed as the specific skill needed to solve
the corresponding item correctly; when the latent response variable exceeds a
threshold, the item is correctly answered. We assume that € is a residual with
mean zero that is independent of m and z. By adding the assumption that € has
a normal distribution, the standard normal ogive model of IRT is obtained,
except that OTL is allowed to have direct influence on the item.

In effect, this specification allows items to have different difficulty for
different OTL levels (cf. Muthén, 1989). The shift in difficulty is provided by
the B parameter. The parameters of this model may be translated into those of
standard IRT so that each item obtains one discrimination parameter value
and, in the present case of two OTL categories, two difficulty parameter values.
The formulas for the translation are as follows. The conditional variance of v
given the x and z variables is standardized to 1, resulting in a residual (e)
variance §; = 1 — A §. Let the mean and variance of 7 be denoted K,and o, ,
respectively. It can then be shown that the two-parameter normal ogive
parameters a (discrimination) and b (difficulty) for item J can be written as

a; = \;6; "0, 4)
by = [(5— BzN" = wolos)?, (5)
10
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In these formulas, the trait has been standardized to mean zero anfi variance
one. The estimated values of a and b may be obtained by mser{mg model
parameter estimates in (4) and (S5), where the sample means, variance, and
covariances for the x and the z are also used to compute the estlma.tefi ., and
o._. For each item, we can then obtain two estimated item characte‘rlstlc curves
and compute differences between these curves. In this paper, we will ghoose to
use the simple index (called D) discussed by Linn, Levine, Hastings, and
Wardrop (1981), where squared probability differences are added up over the
trait range —3 to +3. .

Inserting (1) in (3) gives the so-called reduced-form for the regression of the
y* on the x and z. These are probit regressions, where the model imposes
restrictions on the probit slopes and residual correlations. The slope§ are
expressed by the A, B, and y parameters of the model, whereas the re§1dual
correlations also involve the remaining parameter { for the residual variance.
The parameters may be estimated by fitting the model to these probit regres-
sion slopes and residual correlations. . )

Muthén (1987) describes the LISCOMP computer program which builds on
theory in Muthén (1984) and encompasses the present type of model. The
technical details of our analysis will not be discussed here. Instead, the steps of
the analysis will be outlined. The probit slopes and the probit residual
correlations correspond to different model parts in the LISCOMP framework
and can be analyzed together or separately. In the present case, there are 40 y
variables (items) and a total of about 50.x and z variables. This is a large model;
the full model was fitted by using the probit slopes only to keep the computa-
tions manageable. .

In the first step, LISCOMP was used to estima?e the Problt sl(')pes by
specifying a dichotomous variable type for the y, in('iucmg probit modeling, and
requesting slope (LISCOMP model, Part 2) statistics only. .In the second step,
the estimated slopes were read as sample statistics to whfch the A, B, an_d Y
parameters were fitted by structural equation modeling using the appropflate
LISCOMP structural model part (Part 2). Unweighted least-squgres estima-
tion was used to simplify the computations in this step. To make this estimation
independent of x variable scale, the slopes of Step 1 were computed for x
variables transformed to the 0-1 range. In Step 3, an estimate of the residual
variance ¥ in the ability variable was obtained by analysis of a sx.Jbset of about
half of the items showing particularly good measurement properties. ‘Here,. Part
3 of the LISCOMP structural model was fitted to sample probit residual
correlations.

Analysis Results

Preliminary analyses were performed by standarq IRT tf:chpiques. U§mg Fhe
two-parameter logistic model and marginal maximum llk‘ehhood estimation
provided by the BILOG program (Mislevy & Bock, 1984), it was revealed that
Item 10 was very hard and had deficient measurement properties. The subsc.:-
quent analyses were performed with only 39 test items. An item fac?or aqalysns
including a scree plot strongly supported the notion of unidimensionality for
this set of items.’
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.The es?imation of the influence of the background variables on the ability
will !)e dlscgssed first. Next, the estimates of the measurement parameters
relating the item responses to the ability will be presented. F inally, we will turn

to the estima.tes of primary concern in this paper—namely, those representing
the effect of instructional sensitivity.

Relating the Ability to Background Variables

Th‘e estimates from the regression of the trait on the background variables
are given in Table 3. Although standard errors of estimates are not provided for
this merl, generalized least-squares estimation on a subset of items indicates
that estimates larger than .10 are most likely statistically significant. It is seen
tha‘t the pretest variable related to arithmetic dominates the prediction of
spring math ability. This is natural because this is the area of mathematics best
covered up to eighth grade and because performance on these kinds of tasks
influences the selection of students into more advanced math classes where
they get further training that enhances their ability. One may note that the

Table 3

Effects of Background Variables on Ability

Effect

Variables Estigztes
Pretests

PREALG .45

PREMEAS .75

PREGEOM .45

PREARITH 2.53
Class type

REMEDIAL -.22

ENRICHED .18

ALEGEBRA .10
Attitudes

MORED .31

USEFUL .53

ATTRACT .19
Demographics

FEMALE .03

NONWHITE -.16
Family Background

FAED .08

MOED ~-.05

LOwWoCC .05

HIGHOCC .08

MISSOCC .04
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prearithmetic variable correlates 0.76 with the posttest sum of correct answers.
Among nonpretest variables, finding mathematics useful is the most important
one.

The y-parameter estimates for the effect of OTL variables on the math
ability will not be presented here. Overall, the effects are negligible. The
prediction of math ability by fall measurements is quite successful in that the
estimated proportion of variation in math ability explained by the various
background variables is 76%. ‘

When using the SIMS data to illustrate the approach to assessing instruc-
tional item sensitivity, Muthén (1989) included the OTL variables only and not
the other background variables used here. If we assume that our present model
including such background variables is true, omitting these other background
variables would lead to biased estimates of the item parameters and their
instructional sensitivity. However, we have found that such biases are small for
these data, probably due to the rather small correlations between the OTL
variables and the other background variables. This is a useful finding for
situations where pretests, or other early performance measures, are not
available, and OTL is expected to correlate little with such measures. In
situations where OTL correlates more highly with socioeconomic background
variables, the study of OTL effects is more complex, because inclusion of such
background variables may make the OTL effect appear weaker.

Relating the Items to the Ability

The measurement of the trait v is reflected in the A parameters representing
the slopes (factor loadings) in the regressions of the latent response variables
y* on the trait m. The estimates of these are given in Table 4, which also
contains the estimated values of the threshold T and of the corresponding IRT
parameters, one a and two b for each item calculated as in (4) and (5). Table 4
also contains the corresponding estimates of IRT parameters a and b as
obtained by standard analysis, here carried out by marginal maximum likeli-
hood in the BILOG program (Mislevy & Bock, 1984).

Table 4 shows that Items 3, 6, 7, 17, 19, 21, and 39 have \ values less than or
€qual to .45 and are not good measurements of the math ability trait. It is
interesting to note that six of these seven items have geometric or spatial
Content and that, with the exception of Item 17, all of these items had NTL
values of at least .25.

It is also interesting to note that standard IRT estimation of a and b
Parameters, compared to our approach, gives results that are rather similar for
abut quite different for b. Two explanations may be offered for this. One is that
our results come from a model that extends the standard IRT to background
Variables, giving a fuller description of the trait where it is determined not only
by item performance but also by predictors thereof. In statistical terms, the
model is stronger in that the notion of unidimensionality is extended to not only
€xplain item interrelations but also relations between items and predictors.
Because this is largely a matter of using more information for estimation, the
Second reason relates to bias in the standard IRT estimation due to use of the
Wrong model. Under a model that allows for direct OTL influence on the items,
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Table 4

Measurement Parameter Estimates

Model-based
IRT parameters

Standard
b IRT parameters
Item Threshold Loading a OTL NTL a b
1 2.52 .57 .60 1.26 1.70 .65 .33
2 1.91 .84 .94 -.45 -.46 .70 -.47
3 2.30 .43 .44 1.70 2.58 .52 1.79
4 2.32 .66 .71 .84 .77 .56 .92
5 2.11 .57 .60 .49 .98 .60 .28
6 1.08 .40 .42 .14 -.05 .44 -.31
7 .91 .44 .46 -.99 -.66 .67 -.77
8 .71 .57 .61 -1.57 -1.48 1.00 =1.78
9 1.78 .66 .71 -.02 -.04 .71 -.11
11 2.75 .66 .71 1.47 1.41 .78 .83
12 1.72 .60 .64 -.12 .13 .58 .32
13 2.08 .71 .76 .24 .21 .85 -.89
14 1.68 .70 .75 -.32 -.32 .73 -.49
15 1.31 .49 .52 -.15 -.06 .42 1.22
16 1.77 .72 .78 -.84 -.28 .80 -.33
17 1.47 .43 .45 =-.67 .66 .59 =.45
18 2.49 .53 .55 1.66 1.96 .63 -.04
19 1.72 .41 .42 1.29  1.48 .44 1.05
‘20 1.64 .80 -89 -.22  -.g7 1.06 -1.07

(table continues)

the use of a standard IRT model ignores both student heterogeneity in the item
parameters and the fact that in addition to the trait the OTL influence also
causes dependency among the items.

Instructional Sensitivity

Of greatest interest in this paper are the estimated 8 parameters represent-
ing the direct effects of OTL on the item performance, thereby indicating
instructional sensitivity in the items. The estimated B and the corresponding
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Table 4 (continued)

Model-based
IRT parameters

Standard
b IRT parameters
Item Threshold Loading a OTL NTL a b

21 2.66 .45 .47 2,91 3.13 .53 .89
22 2.50 .78 .85 .22 .49 .83 -.39
23 2.23 .71 .77 .38 .41 .84 .11
24 1.95 .95 1.09 -.72 -.67 .86 -.28
25 1.83 .88 .99  -.59 -.64 .75 .16
26 .32 .52 .55 -2.08 --a .45 -.76
27 1.91 .59 .62 .53 .50 .68 -.30
28 2.00 .75 .82 -.06 =-.08 .72 -.52
29 1.14 .65 .69 -1.02 -.96 .93 -1.04
30 1.54 .49 .51 ;51 .41 .48 .56
31 2.44 1.08 1.28 -.45 --a .97 -.46
32 1.90 .89 1.01 -.60 --a .83 .21
33 1.86 .58 .61 .38 .49 .61 -.00
34 3.05 1.00  1.17 .72 .31 17 .45
35 1.14 .46 .48 -.76 -.25 .58 -.45
36 1.20 .76 .83 -1.42 -1.13 -.68 -.28
37 1.98 .89 1.01 -.54 -.50 .83 .51
38 2.83 .85 .95 -.28 .57 71 -.06
39 .60 .34 .35 -2.90 -.95 .49 -.21
40 .91 .52 .52 -1.38 -.98 .54 .16

3No student is available in the NTL category

Mmeasures of distance between the probability curves (item characteristi.c curvqs)
are given in the rightmost part of Table 1. The impli(?ations of t.he estimates in
this part of the table are best understood by a discussion of the items that show
Substantial instructional sensitivity.

Consider first Item 17. This is a geometry item, containing pictures of angles,
that for the correct solution requires knowledge of the deﬁniti'or? of an acute
angle. From Table 1, we note that 13% have had no OTL for this item but that
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38% get the item right, whereas 62% get it right with OTL (this year or prior
years). The B estimate for OTL is positive reflecting the extra advantage, over
and above what the trait level would predict, of having OTL versus not having
OTL. Note that while the proportion correct for an item is an estimate of
marginal probability, the B effect corresponds to a change in conditional
probability given the trait and is therefore the appropriate measure of instruc-
tional sensitivity. Several items have large differences in proportion correct for
OTL versus NTL but have negligible B effects. In order to gauge the impor-
tance of the corresponding shifts in the conditional probabilities, Figure 2
shows the standardized probability curves over the trait range —3 to +3.

For an average trait value of 0, the extra advantage of OTL is estimated as an
approximate increase of 0.15 for the probability of a correct answer. The
corresponding curve distance (D value) is .32.

A working hypothesis for a particularly strong reason for instructional
sensitivity is that the item is definitional in nature and represents early learning
on the topic of angles. It is therefore rather hard for students who have not
been exposed to it but rather easy for students who have been exposed to it. A
harder item may show less instructional sensitivity because, even with OTL,
many students may get it wrong. An item such as Number 17 may be less
valuable as an indicator of a more general trait than as an indicator of exposure
in a certain limited area. From Table 4, we note that Item 17 is among the
group of items that we identified as having rather poor measurement qualities,
with an estimated \ value of .43 (an estimated a value of 45).

Consider next Item 39. This item shows a point in a coordinate system and
asks for its coordinates. Here, a rather large group of 30% have no OTL. In
terms of proportion correct, the item seems easy for the OTL category (0.63)
but hard for the no OTL (0.33). There is a substantial difference between the
estimated probability curves for OTL versus no OTL (0.35). Like Item 17, this
instructional sensitivity in Item 39 seems to correspond to definitional learning
such that the item becomes quite easy when the student is exposed to this

.91
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FIGURE 2. Estimated probability curves for Item 17
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knowledge. But the item is a poor indicator of the trait (see Tablg 4)'-—.in fa?ct,
the worst one. The estimated probability curve shows a small d1§crlm1natlon
(slope). This would mean that getting the item correct involves little _gt.aneral
math ability and only indicates a specific knowledge of the definition, a
plausible explanation for this item. o

Other items also show substantial instructional sensitivity and may further
support the hypothesis of introductory definitional content. To solve Itqm 38,a
student needs to know the definition of percentage and to apply a stralghtfpr-
ward arithmetic operation; Item 16 calls for knowledge abqut multiplying
negative integers and parentheses. But uinlike Items 17 and 39 discussed above,
Items 38 and 16 provide good measurements of the trait.

Conclusions

The proposed methodology represents a new way to study thc_e instrugtional
sensitivity of achievement items. Given sufficiently rich data, mstructxonglly
sensitive items can be detected while at the same time gaining informatlpn
about the achievement process through the estimation of a comprehensive
model that goes well beyond those of standard IRT analytical methods for
examining achievement test data.

The exact nature of the benefits to be gained from estimating the eﬁects. qf
instructional opportunities on the latent ability depends on the specific empiri-
cal context in which the methodology is employed. Naturally, the heterogeneity
of the pool of achievement items and of the student population tested_ matters.
What also matters is adequacy of the specification of the model of achlevemept
and of the measurement of instructional opportunities and other characteris-
tics.

In the present case, there was considerable heterogeneity in thf: mathematigs
instruction experiences of students; some students were Stl“. enrolled in
remedial instruction dominated by arithmetic operations: with integers and
common and decimal fractions when others were enrolled in elementary
algebra classes. The set of test items broadly spanned topics typically covered
by the end of elementary algebra instruction. Against this backdrop, the model
examined here featured parameters estimating the influence of su{dent back-
ground and OTL content pertinent to each specific test item on a smgle latent
mathematics ability trait and the effects of the mathematics ability trait and the
item-specific OTL on the difficulties of test items. o

Under these modeling conditions, item-specific OTL had limited impact on
the latent variable representing mathematics ability once student background
variables (which included pure mathematics performance) were controlled.
However, for selected test items, there were strong direct effects of latent
Mmathematics ability. In other words, the general, presumably more §table
achievement trait, was insufficient to account for performance on these items.
According to standard IRT analysis methods, either the IRT re?sults would l?e
biased by the inclusion of items or items would have to be eliminated to avoid
violation of IRT assumptions. Neither prospect is attrac-tive.

In our opinion, concerns about IRT bias when ignoring effe_cts of OTIT and
Other background variables should not be exaggerated. Preliminary studies of
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ability estimation (Muthén & Short, 1988) indicate that ability estimates are
little affected by ignoring such heterogeneity. We would expect that equating
would be even less adversely affected. The issue is not so much what goes wrong
in conventional IRT, but what is overlooked and not uncovered in conventional
IRT. \

Clearly, the present analysis provides a more detailed way to examine the
influence of instruction on responses to test items, a matter of considerable
interest in developing achievement tests and interpreting test results. In the
present case, certain test items representing early stages of learning about
selected mathematical topics were particularly sensitive to specific instruction.
Individual differences represented within the single latent mathematics ability
did not adequately account for performance differences on these items.

This methodology has also been successfully applied to all rotated forms of
the eighth-grade SIMS test (Kao, 1990), identifying further instructionally
sensitive items using OTL composites. What next steps to take in response to
the identification of instructionally sensitive items is unclear. A possibility for
generalization is to consider employing a multidimensional latent achievement
model to represent the domain of test items. Incorporating specific latent
factors representing instructionally important curriculum segments within the
psychometric model is both theoretically and practically desirable. Presumably,
differential instructional exposure should then influence the specific factors.
Under such conditions, any residual direct effects of OTL on item performance
represent teaching to the specifics of the test, a typically undesirable instruc-
tional strategy. We are currently exploring the possibility of applying models
with multidimensional latent achievement traits with the SIMS database (e.g.,
Gold, 1990; Kim, 1990; Muthén, 1990).

Given psychometric methodology that can better tie test item performance
to both ability and instruction, the proper measurement and measurement
modeling of instruction is highlighted. The above analyses utilized a class-level,
and rather crude, OTL variable reported by the teacher. It is recognized that
the mixture of student-level responses and class-level OTL information creates
multilevel, or hierarchical observations, a problem that we were forced to
ignore in our analyses. With few classes in an OTL category, measurement

error in the teacher-reported OTL may have strong biasing effects. The
class-level information may also be incorrect for a given student. Student-level
OTL is available, but it may contain even more measurement error. Further
substantive research needs to find ways to properly combine information of

several kinds in order to provide more reliable and informative instructional
student background.

Notes

'In preliminary analyses, we considered using three-category OTL measurements
corresponding to OTL this year, OTL prior year(s), and no OTL. However, this
approach was abandoned in favor of using dichotomous OTL for the following concep-
tual and technical reasons. First, the prior year effect may be hard to estimate because
prior year OTL is not distinctly defined. It may refer to OTL more than a year ago as
well as OTL late in the previous year. Second, many items showed low percentages for
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the prior year OTL, leading to unstable estimates. Thir'd, use; of Fhe three-category OT!,
variables leads to high correlations between several items’ prior year and this year's
OTL measurements, resulting in multicollinearity among the predictors. '

Preliminary analyses also found probable misreporting by a teacher. For two 1Fems,
the no OTL category was made up of 24 students from one class V\{ho all got the items
right. We plotted the sum of correct answers versus the sum (?f the dichotomously scored
OTL and found this class to be a distinct outlier with very high performance and rather
low OTL. For these two reasons, this class was deleted from the analyses to be
presented. ' ' . '

Note that this is only a rough assessment of the dimensionality of the 1‘tems, because
the items may correlate not only due to the trait but also due to the OTL influence.

Appendix
The 40 Core Items

Item # Question Content Behavioral
1 2 meters + 3 millimeters is equal to M 1
2 1/5 is equal to A 11
3 If 5x + 4 = 4x - 31, then x equal to A 1
4 Four 1-liter bowls of ice cream were

set out at party F 111
5 Which is closest appro. to area of M 11
6 Area of the shaded figure to nearest

square unit, is ) M 111
7 Diagram shows a cardboard cube which

has been cut along G 111
8 Lenght of ab is 1 unit. The best estimate M It
9 On above scale reading indicated by the

arrow is M 111
10 A solid plastic cube with edges with

1 cm long weighs 1 gram. M v
11 On a number line two points a and b

are given. The coordinate G 11
12 A painter is to mix green and yellow .

paint in the ratio of P
13 pr:lwandifp=12and1=3,then :

w is equal to . A
14 A model boat is built to scale so that it

is 1/10 as long as P 111
15 The value of 0.2131 x 0.02958 is approx. F 11
16 (-2) x (-3) is equal to A i |
17 Which of the indicated angles is acute? G I
18 If 4x/12 = O, then x is equal to A 1
19 The length of the circumference of the

circle with center at G IV
20 In a discus-throwing competition, the

winning throw was 61.60 F 111
21 In the above diagram, triangles ABC

and DEF are congruent G 111

(continued)
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Appendix (continued)

22 (Triangle with 2 angles given) X is
equal to G II
23 A square is removed from the rectangle
shown. What is the 111
24 Cloth is sold by the square meter. If
6 square meters of P 111
25 The air temperature at the foot of a
mountain is 31 degrees A ITI
26 0.40 x 6.38 is equal to F I
217 A shopkeeper has x kg of tea in stock.
He sells 15 kg and A 111
28 In the figure the little squares are all .
the same size and F II
29 The distance between two towns is
usually measured in M I
30 The table below compares the height
from which a ball is A II
31 2/5 + 3/8 is equal to F I
32 7 3/20 is equal to F I
33 In a school of 800 pupils, 300 are
boys. The ratio of the P II
34 What is 20 as a percent of 80 P
35 The sentence 'A number x decreased
by 6 is less than 12' can A 11
36 30 is 75% of what number? P I
37 Which of the points a, b, ¢, d, e, on
this number line F II
38 20% of 125 is equal to P I
39 What are the coordinates of point p? G I
40 Triangles PQR and STU are similar. How
long is SU? G I11
KEY:
Content Classification Behavioral Level
F = Fractions I = computation
P = Ratio proportion percent IT = comprehension
A = Algebra ITII = application
G = Geometry IV = analysis
M = Measurement
I = Integers
S = Statistics
A = Algebra
G = Geometry
M = Measurement
I = Integers
S = Statistics
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Gender Diﬂ'efences in Multiple-Choice Tests: The Role
of Differential Guessing Tendencies

Gershon Ben-Shakhar and Yakov Sinai
Hebrew University, Jerusalem, Israel

The present study focused on gender differences in the tendency to omit items and
to guess in multiple-choice tests. It was hypothesized that males would show greater
guessing tendencies than females and that the use of formula scoring rather than
the use of number of correct answers would result in a relative advantage for
females. Two samples were examined: ninth graders and applicants to Israeli
universities. The teenagers took a battery of five or six aptitude tests used to place
them in various high schools, and the adults took a battery of five tests designed to
select candidates to the various faculties of the Israeli universities. The results
revealed a clear male advantage in most subtests of both batteries. Four measures
of item-omission tendencies were computed for each subtest, and a consistent
pattern of greater omission rates among females was revealed by all measures in
most subtests of the two batteries. This pattern was observed even in the few subtests
that did not show male superiority and even when permissive instructions were
used. Correcting the raw scores for guessing reduced the male advantage in all
cases (and in the few subtests that showed female advantage the difference
increased as a result of this correction), but this effect was small. It was concluded
that although gender differences in guessing tendencies are robust they account for
only a small fraction of the observed gender differences in multiple-choice tests. The
results were discussed, focusing on practical implications.

A great deal of research has been devoted during the past 3 decades to the
issue of gender differences in cognitive abilities. In their extensive review of the
literature, Maccoby and Jacklin (1974) concluded that three consistent differ-
€nces between males and females can be detected during puberty. Females
Outscore males in tests of verbal ability. The female advantage is revealed
throughout the whole range of verbal abilities, and it averages about .25
Standard deviation (SD). Males perform better than females on tests of both
visual-spatial and mathematical ability. The gender differences in these two
areas are between .4 and .5 SD in high school ages.

The conclusions drawn by Maccoby and Jacklin (1974) were cr'iticized by
Some researchers (e.g., Block, 1976; Sherman, 1978), but there is little floubt
that some consistent correlations between gender and performance exist on
various multiple-choice tests. Hyde (1981) conducted a meta-analysis of gendg
Cognitive differences, using the set of studies reviewed by Maccoby and Jacklin
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