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Moments of the censored and truncated bivariate
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Published results on the moments of censored and truncated bivariate
normal distributions do not include explicit formulas for all combinations of
limits in a form that is readily adapted for computation. Moments for
truncation and censoring that can take place both from above and below in
both variables are given in a general form from which special cases are
easily obtained. The attenuation of the correlation coefficients is studied ina
series of graphs and related to examples of factor analysis.

1. Introduction

This paper is motivated by the following type of measurement problems common in
the analysis of behavioural data. In a study of depression and anxiety, Muthén
(1989a) analysed dichotomously scored symptom data obtained by questionnaire,
Flere, 0 and 1 correspond to absence and presence of the symptom, respectively. Since
the data were obtained from a normal population, 1s were rather rare observations.
A Tactor analysis was carried out for 3161 individuals on 41 such skewed,
dichotomously scored items using tetrachoric correlation coefficients, and several
well-defined factors were identified. The tetrachoric assumption of underlying
normality for continuous latent response variables was tested by means of the
method of Muthén & Hofacker (1988) and could not be rejected, As described in
Muthén (19894), this means that the strong skewness in the dichotomous items can
be interpreted as arising from underlying normal symptom variables which have
thresholds far out in the right tail of their distributions. For simplicity in further
analyses, it is of interest to sum such dichotomous variables over items loading on
each factor. This yields observed variables that have a large percentage of cases with
value zero. Given underlying normality for the dichotomous components and a large
number of components, a rough approximation is to postulate that each such
summed score represents a normal variable which is censored from b.elow at the
value zero. Analogous to the situation of tetrachoric correlations and phi coefﬁmepts
(see, for example, Lord & Novick, 1968), it is then of interest to relate the correlation
between the underlying normal variables to the correlation l?etween the observed,
censored variables. We may also be interested in the correlation between Qbserved
variables for individuals who exhibit none of the symptoms of thf: scores mvolv?d
This leads to considering correlations for truncated variables, in this case with
truncation point zero. ‘ )
Assume, I?or example, two summed scores, Depression and Anxiety for which the
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Table 1. Factor analysis model
Factor
Variable I II 111
1 0887 0 0
2 0827 0 0
3 0 0.941 0
4 0 0733 0
5 0 0 0.782
6 0 0 0.837
Factor correlations
I {| 11
I 1
Il 0.501 1
II1 0.733 0477 1

Observed variable correlation matrix

1 2 3 4 5
1 1
2 0734 1|
3 0.418 0390 1
4 0.326 0304 0.690 1
5 0509 0475 0.351 0.274 1
6 0.544  0.508 0.376 0.293 0.654 |

correlation coefficient is to be determined. In Muthén

(1989a), data from two different

sites were analysed and it was found that different symptom (factor) levels were
present. As a first motivating, although artificial example, consider a Depression score
and an Anxiety score for each of the two sites, where in both cases censoring takes
place from below at zero. Assume two underlying bivariate normal variables with
correlation 0.5 and variances one in both sites, with means 0.39, 0.39 for the first site
and means 0.84, 0.84 for the second site. While the underlying correlation is 0.5 in

between the‘ observed variables will be developed in Sections 2-4 below and we will
return to this example in the concluding discussion section.

» the model and the parameter
_ (1989q). There is a simple
rsix observed variables and there are three correlated
variances that yield unit observed variable variances, this
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with censoring percentages for the six variables of 0.79, 0.85, 0.87, 0.97 and 0.98.
Assume now that the six variables structure of Table 1 pertains to uncensored normal
variables. Using the formulas to be derived below, we can find the correlations
among the corresponding observed, censored variables and consider these for factor
analysis. We will return to this example in the concluding section. As we will see,
factor analysis of the observed variable correlations distorts the structure for the
underlying uncensored variables of Table 1, yielding biased factor analysis parameter
estimates. We argue that it is more realistic that a simple structure exists in this way
for underlying variables and that this solution gets distorted when analysing
censored, or truncated, versions of these underlying variables. This is because the
distributional assumptions of the standard linear factor analysis model for observed
censored, or truncated variables, such as residuals being uncorrelated with factors,
probably do not hold (cf. regression analysis with such dependent variables, as in for
instance, Maddala, 1983).

The main aim of this paper is to review and derive results for the moments of the
censored standard normal distribution as they pertain to results for correlation
coeflicients. This is carried out in Sections 2-4. Section 5 returns to the motivating
examples of the present section and uses the derived results to demonstrate some
practical consequences. Issues of estimation of correlations and factor analysis thereof
are also included.

As a first step of obtaining the moments of the censored standard bivariate normal
distribution we consider the moments of the truncated bivariate normal distribution.
Rosenbaum (1961) gave explicit formulas for truncation from below in both variables,
h,<y, <o, by<y,<oo by direct integration, while Tallis (1961) gave general
formulas for multivariate truncation from below in the multivariate normal
distribution using the moment-generating function. Generalizing results by Ait.kin
(1964), Regier & Hamdan (1971) expressed the moments in terms of Hermite-
Chebyshev polynomials for truncation from below and above in both variables. An
explicit formula was, however, only given for the case of truncation from belo\y at the
same point in both variables. Des Raj (1953) gave the moments for truncation and
censoring from below and above in one of the variables, while Shah & P:mkh (1964)
gave recurrence relations among the moments in various cases of truncation. In none
of the above cases, however, are the explicit moment formulas readily apparent for all
cases of truncation from below and/or above in the two variables. '

In this paper we use the moment-generating approach of Talli§ (1?61) to give
explicit moment formulas for truncation in the standarq bivariate normal
distribution. To cover in a single formula truncation that is either from below or
from above in each of the variables, we consider truncation of the more geperal form
h, <y, <a,, by<y,<a,. Building on this, we also give the desire.:d explicit moment
formulas for the corresponding censored case. The formulas are directly amenable' to
computation. Several plots are given to describe the attenuation of the correlation
coefficient in some pertinent truncated and censored cases.

2. Truncated case

Consider the bivariate normal probability
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where we use ¢(') to denote the standard univariate or bivariate normal density.
Similar to Tallis (1961), equation (2), we may express the moment generating function |
(see, for example, Hoel, Port & Stone, 1971) M as

ay o
aM=e” 2R [ F @(yy, y,)dy,dy; =A% B, (2)
bt b

say, where t'=(t,1,) is a vector of real numbers, af =a;—(t,+ pt;), b¥ =b;— (t;+pt;), p
is the correlation coefficient of a 2x 2 matrix R, and i=1 or 2, with j assuming the
opposite value. Using obvious notation, let

&
ay

Mmgﬂwmww=ﬂ%m, (3)

J

5o that

B/61,=6 lif(t.', yi)dyi/ét;

at a%

Y] J
=da) | (yj|a¥) da/dt,— p(by) § dy|bFySbr/sey
b

by
ay

+1§[~ of (11, y)/dt;dy,. (4
i

Considering n M/dt; at 1;=0 we have with ¢=(1 —p?)7 12, the univariate expectation
nE(Y5 a1,b1,05,05) = — d(a,) [O[(a;— pa)c] —QOL(b;— pay)c]]
+ (b)) [®[(a;~ pby)c] — D[(b,— pby)e]]
—pP(a) [D[(a;~ pa;)c] — D(b, ~ pay)c]]

+p¢(b)) [P(a;— pb))c] - [(b;— pb)c]], (5)

where @(+) is the univariate standard normal distribution function. When any one of
(tll)le as and bs equals + oo, (5) simplifies by noting that P(£0)=0, PLeo]=1,
(~00)=0. For example, when a,= oo, a;=oco, (5) gives the result for truncation

from below in both variables given by Rosenbaum (1961). When b; = — o, by=—u
we have truncation from above in both variables,
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(1) n(a,, —0,a,, — O)E(y; a4y, — 00,a,, ~0)= —(a)®(a;— pay)c]

— pd(a)®l(a;—pay)c]. (6)
ity. | ‘
ilo)|'1 ! When a, =00, by = —c0, we have truncation from below in y; and from above in y,, 1

n(c0, by, az, — 00)E(yy; 00,by,a;, — 00)=d(b,)®[(a,— pby)c]
(2} — pd(a,) [1—@[(by —paz)c]]. @)
L P { (00, by, ay, —0)E(y,; 00, by, a5, —00)= —¢(ay)[1—DL(by ~ pay)c]]
e + (b, ®L(a; — pby)e]]. Q
. Furthermore, nd*M/6t;8t; at t;=0, t;=0 yields the expectation
(3
r nE(yiypay, by, e, by)= {:}} n— {;} a;p(a)) [®[(a;— pa)c]—@L(b;~ pa;)cll
+ { 0 }(p(uo [ole;— pa)c] — (b —pale]]
+{/1)} byp(by) [®L(a;— pb;)c]— (b~ pbi)c]]
(4) 0
{ }d)(b,) Col(a;— pbi)e] — 95 —pbiel]
ion /
l-{ }pajd) ) [O[(ar— pa)e] — OL(b,—pa)c]]
. o
; +{ . }p(i)(aj) [¢[(a;:— pay)c]— §L(bi—pay)ecl]
. ¥ {[1)} pb (b)) [O[(a;— pb;)c]—L(bi—pb)c]
of -
=1, .
on —{" . }pqxb,) [9T(a;— pby)e] — $L(bi—pb)T] ©)
3V
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Here, {c;;/c;} gives the multiplying factor for i=j (c,) and i j (¢)), respectively.
Special cases are again obtained by letting certain truncation points go to +u,
where we note that the product x¢(x)—»0 when x— + 0. When ay =00, d,= 00, the
results again agree with those of Rosenbaum (1961), while truncation from above in
both variables (b, = — o0, b, = — o0) yields
may, = 00,45, — ) E(y7; a1, — 0, 8z, — 00) =n(ay, ~ 00, ay, ~ c0) —ap(a)P(a;— pa)] |
“‘Pzaj(/’(aj)q)[(af“Paj)C]
+c7 pd(a)l(a;~ paj)e], {10)
may, —0,a,, ~00)E(y, y,; 4y, — 00, G, — 00) = pn(a;, — 0, a,, — 00)
—payd(a)D[(a, — pa,)e]
+c a)pllay — pa,)c]
— payp(az)P(a, — pay)c]. (th
With truncation from below in y1 and above in y, (a, =, b, =0) we have
m(e0, by, a3, ~ 00)E( y3; 00, by, a,, ~ 00) = (00, by, 4y, —0)
+ by (b )D[(ay ~pb,)c]
—p2aylaz) [1 —O[(b, — pay)c]]
— ¢ pdlay)plib, — paj)c], {3
(0, by, a5, — 00)E(y3; w0, b,,a,, — ) =m(00,b,a,, —c0)
—ay(az) [1-D[(b, — paj)e]
*l)sz(/’(bl)q’[(az"l’bl)‘-']
= pd(b)Pl(a; — pb,)c]], (13)
(00, by, a5, — 0)E(y, y,: ©0,by,8,, — 0) = pn(c0, b,, az, — o)
+pb1d(b)®(a; —pby)c]
~c” ' p(by)¢l(az —pb, )]

—PazP(az) [1=®[(b, — pay)c]]. (14)
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3. Censoring

Consider now a standard bivariate normal distribution with censoring,
vi=a, if y2a

yi=b;, if y=Sb. (15)

The two-dimensional y,, y,-plane is then divided into nine areas. We must recognize
that under censoring, as opposed to truncation, we also have contributions to the
expectation from units outside the area
by <y <ay,
by<y,<a,, (16)
since the unit is then not discarded. As seen below, both variables are censored in
four areas. In four other areas one variable is censored and the other is not,
whereupon it remains to determine the marginal expectation of the latter. In each of
the nine areas, the expectation is obtained from various special cases of the general
formulas (5) and (9), where censoring points go to 3 co.
Let E(y!y3) represent the four r, s combinations 1, 0 (E(y,)), 2, 0 (E( y3), 0, 1
(I(y2)) 0, 2 (E(y3)), and 1, 1 (E(y, y,)). Summing over the nine areas, we have
E(y} y3)=n(by, —00,00,a,)b1a3
+7(ay, by, 00, a2)E(Y; a1, b1, 00,02)a3
+n(00, ay, 00, a,)d1 43
+ n(bla — 00,43, bz)brlE(y;; bls — 00, ay, bz)
+n(ay, by, az, b2) E(¥1¥3); a1, by, 62, b2)
+ TC(OO, 1,87, bz)aiE(J’sj; 00,a1,42, bz)
+7E(b1, - 00, b2’ - Oo)b'ibsz
+7t(a1, bl’sz - w)E(y'i; al;bla b2= - cx:))bSZ

+n(w5alab2: —Oo)aribi (17)

As in the truncated case, various special cases of censoring are obtainpd by lettir.xg
censoring points go to + 0. In doing so, it is clear that certain of the nine areas will
vanish and not contribute to (17).
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Figure 1. Correlation attenuation for truncation from below in both variables. x axis is
percentage truncation; y axis is orginal correlation value,

4. Behaviour of the correlation coefficient

The above formulas will now be used to graphically describe the relationship between
the correlation in various truncated and censored distributions with that of the
correlation in the original standard bivariate normal distribution. The bivariate
normal probabilities involved were calculated using a routine described by Kirk
(1973); however, see also Divgi (1979). A listing of a FORTRAN program used by
the author for these computations may be obtained on request.

Figure { describes the correlation in the case of truncation from below at the same
point in both variables (a,=00, by=b, a,= oo, b,=b); this figure was also given in
Regier & Hamdan (1971). In Fig. 2 the corresponding graphs are given for the

censored case. We note that the attenuation is considerably smaller in the censored
case,

In Figs 3 and 4 the original correlation is held constant at (.5, while the limits of
the two variables are allowed to differ. These figures describe the correlation in the
case of truncation and censoring both from below in both variables (ay =00, by,

43=00, by), and from below in one and from above in the other (a,=00, by, a,,
bz = - W) .
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Figure 2. Correlation attenuation for censoring from below in both variables. x axis is
percentage censoring; y axis is original correlation value.

We may compare the results of Figs 1 and 2 with those of Figs 3 and 4. For
instance, Fig. 1 shows that equal truncation from below of about 58 per cent in
variables correlated 0.5 yields an attenuated correlation of 0.25. This agrees with the
‘BB 0.25 curve of Fig. 3, which also gives unequal truncation points yielding this
attenuation. It is interesting to note that when truncation takes place instead from
below in one variable and from above in the other, an attenuated correlation of 0.25
is obtained already with approximately 23 per cent truncation in each variable (see
‘BA 0.25' curve in Fig. 3). Similar results are found in Fig. 4. For instance, while
cqual censoring from below of about 65 per cent in both variables gives an
attenuated correlation of 0.4, a similar amount of censoring from below in one
variable and from above in the other gives an attenuated correlation of only 0.25.

5. Discussion

g examples of the introductory section. In the
first example, the underlying correlation was 0.5 for each of two sites. The degree of
censoring was 65 per cent for the two variables in the first site and 80 per cent for

the two variables in the other site. We may use Figs 3 and 4 to roughly obtain the
and censored variable correlations. They are lower and

Let us now return to the two motivatin

corresponding truncated
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Figure 4.‘ C“orrelation attenuation for censoring from below or above with original correlation
_0.5. * axis Is percentage censoring; y axis is percentage censoring, BB x, censoring from below
in poth variables resulting in attenuated correlation x; BA x, censoring from below in one
variable and censoring from above in the other resulting in attenuated correlation x.
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Table 2. Factor analysis for censored/truncated variables

‘ Factor
Variable I i m
{ 0.806/0.677 0/0 0/0
2 0.708/0.573 0/0 0/0
3 0/0 0.824/0.670 0/0
4 0/0 0.601/0.476 0/0
5 0/0 0/0 0.563/0.438
6 0/0 0/0 0.528/0.470
Factor correlations?
- 1 I I
I 1 0.300 0.544
11 0.358 1 0277
111 0.491 0.255 1
Observed variable correlation matrix?
1 2 3 4 5 6
1 t 0.388 0.136 0.096 0161 0.174
2 0.571 { 0.116 0.083 0.136  0.146
3 0.239 0.206 1 0.319 0.082 0087
4 0.176 0.151 0.495 1 0.059  0.061
5 0.222 0.197 0.119 0.084 1 0.206
6 0,207 0.187 0.112 0,077 0297 1

*ensured/iruncated varinble corrclutions are given in the lower/upper-triangular part,

different as expected, about 0.25 and 0.20 for truncation and about 040 and 0.35 for
censoring. We would draw the incorrect conclusion of low and unequal correlations.

The second example considered factor analysis. Using the specifications described
in conneclion with Table 1, we obtain the corresponding censored and truncated
variable correlations as given at the bottom of Table 2. This table also gives the
estimates of loadings and factor correlations obtained by maximum likelihood factor
analysis of these correlations. While the model for the original variables fits perfectly
to the correlations of Table 1, the same model applied to the censored and truncated
variables fits remarkably well but not perfectly, with 6 degree of freedom chi-square
test of fil values of 0.34 and 0.03, respectively, for a sample size of 3161. Comparing
Tables 1 and 2, it is seen that the correlations are severely attenuated by censoring/
truncation and that although much of the attenuation gets absorbed into deflated
loading cstimates, there is also a considerable amount of misestimation of the factor
correlations. The model distortion may go unnoticed since it cannot be detected by
the chi-square model test of fit.

The model and parameter values used in Table 1 were obtained from a real-data
analysis based on the depression and anxiety study of Muthén (1989a), corresponc.img
to the three factors Anxious Depression, Phobic Anxiety, and Somatic Anxiety.
Muthén (1989bh) proposes new methodology for both computation of sar'nple
correlations underlying censored variables and factor analysis of these correlations.
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The correlation estimates are obtained by maximum likelihood (ML) in two steps for

each pair of variables, first estimating means and variances by two univariate ML |

analyses, and then estimating the correlation coefficient by bivariate ML holding the
values for the means and the variances fixed. This procedure yields relatively simple
and robust computations and the estimates are usually very close to the full
(bivariate) information ML estimates. The factor analysis is then carried out by
weighted least squares using as weight matrix an estimate of the asymptotic
covariance matrix of the estimated correlations (Muthén, 1987, 1989b).

The factor analysis procedure of Muthén (1989b) resulted in the estimated
parameter vaiues of Table 1 with a chi-square model test of fit of 6.62 with 6 degrees
of freedom (sample size 3161). Hence, the model fits extremely well. It may be noted
that ML factor analysis of the ordinary Pearson product moment correlations gave a
considerably higher chi-square value of 28.47 with the same degrees of freedom,

A further example of the use of the formulas derived in this paper was given in
Muthén, Kaplan & Hollis (1987) related to selectively missing data,

Acknowledgements

This research was supported by grant no. SES-8312583 from the National Science Foundation.
I wish to thank Chuen-Rong Chan for drawing the figures,

References

Aitkin, M. A. (1964). Correlation in a singly truncated bivariate normal distribution.
Psychometrika, 29, 263270,

Des Raj (1953), On estimating the parameters of bivariate norm

and singly linearly truncated samples. Sankhya, 12, 277-290, '
Divgi, D. R, (1979). Calculation of the tetrachoric correlation coefficient, Psychometrika, 44,
169-172,

Kirk, D. B. (1973). On the numerical approximation of the bivariate normal (tetrachoric)
correlation coefficient, Psychometrika, 38, 259-268,

Hoel, P. G,, Port, S. C, & Stone, C. J. (1971). Introduction to Probability Theory. New York:
Houghton Mifitin,

Lord, F, M. & Novick, H, (1968). Statistical Theories of Mental Test Scores. Reading, MA:
Addison-Wesley.

Maddala, G. S. (1983). Limited-dependent and Qualitative Variables in Econometrics. Cambridge,
UK: Cambridge University Press.

Muthén, B. (1987). LISCOMP. Analysis of Linear Structural Equations with a Comprehensive
Measurement Model, User's Guide. Mooresville, IN: Scientific Software, Inc.

Muthén, B. (1989a). Dichotomous factor analysis of symptom data. In W, W. Eaton & G.
Bohrnstedt (Eds), Latent Varigble Models for Dichotomous Outcomes: Analysis of Data from
the Epidemiological Catchment Areq Program. Sociological Methods and Research, 18, 19-65.

Muthén, B, (1989b). Tobit factor analysis. British Journal of Mathematical and Statistical
Psychology, 42, 241-250,

Muthén, B. & Hofacker, C.
Psychometrika, 53, 5635

Muthén, B., Kaplan, D. & Hollis, M. (1987). On structural equation modeling with data that
are not missing completely at random, Psychometrika, 42, 431-462.

Regier, M. H. & Hamdan, M., A. (1971). Correlation in a bivariate normal distribution with
truncation in both variables. Australian Journal of Statistics, 13(2), 77-82.

Rosenbaum, S. (1961). Moments of a truncated bivariate normal distribution, Journal of the
Royal Statistical Society, Series B, 23, 223229,

al populations from doubly

(1988). Testing the assumptions underlying tetrachoric correlations.
78.

o




Bivariate normal distribution 143

Shah, §. M. & Parikh, N. T. (1964). Moments of single and doubly truncated standard
bivariate normal distribution. Vidya (Gujarat University), 7, 82-91.

Tallis, G. M. (1961). The moment generating function of the truncated multinormal distri-
bution, Journal of the Royal Statistical Society, Series B, 23, 223-229,

Received 13 May 1987 revised version received 31 August 1988




