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This paper expands on a recent study by Muthen & Kaplan (1985) by
examining the impact of non-normal Likert variables on testing and
estimation in factor analysis for models of various size. Normal theory GLS
and the recently developed ADF estimator are compared for six cases of
non-normality, two sample sizes, and four models of increasing size in a
Monte Carlo framework with a large number of replications. Results show
that GLS and ADF chi-square tests are increasingly sensitive to non-
normality when the size of the model increases. No parameter estimate bias
was observed for GLS and only slight parameter bias was found for ADF. A
downward bias in estimated standard errors was found for GLS which
remains constant across model size. For ADF, a downward bias in
estimated standard errors was also found which became increasingly worse
with the size of the model.

1. Introduction

. A recent paper by the authors (Muthen & Kaplan, 1985) considered the problem of
factor analysis with non-normal Likert variables. Estimators which assume

\ continuous (interval scale) variables such as normal theory maximum likelihood
(ML) and normal theory generalized least squares (GLS) were compared to the
asymptotic distribution free (ADF) estimator of Browne (1982, 1984), which does not
assume normality. These estimators were applied to both skewed ordered categorical

. variables and to skewed categorical variables with underlying continuous normal
variables. For the latter case ML, GLS, and ADF were compared to the categorical
variable methodology (CVM) estimator of Muthen (1984), which explicitly takes into
account the categorical nature of the variables and assumes underlying continuous

, normal response variables. This note only considers the former case where our
interest is in the structure for the observed variables.
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Considering a four-variable, single-factor model, our results showed that for
univariate skewness values in the range of —1.0 to 1.0 the chi-square goodness-of-fit
tests obtained from the normal theory estimators were quite robust to the various
degrees of non-normality studied. For univariate skewness greater than 20 in
absolute value however, we found that ML and GLS chi-square tests became too
large. Here the ADF estimator was found to reduce the values of the test statistics to
an acceptable level. Our results also showed no parameter estimate bias for any of
the estimators studied. A slight downward bias of estimated standard errors was
found for the normal theory estimators when variables were moderately to severely
skewed. No substantial downward bias in estimated standard errors was found for
ADF. On the whole then, the normal theory estimators performed rather well for
moderately non-normal data. These results are compared to related research (e.g.
Boomsma, 1983; Browne, 1984; Tanaka, 1984) in Section 5 of Muthen & Kaplan
(1985).

Since the publication of our previous paper the robustness to non-normality of
ML, ADF, as well as new elliptical estimators has been studied in Harlow (1985). In
particular, Harlow examined a six-variable, two-factor (8d.f) model for sample sizes
of 200 and 400. She chose skewness values ranging from —2.0 to +2.0 and kurtosis
values ranging from —1.0 to +8.0. Harlow’s results agree with our previous findings
in the sense that the normal theory ML estimator performed rather well for
moderately non-normal data.

Results of our study and those of other researchers (Boomsma, 1983; Olsson, 1979)
led us to believe that the results for normal theory estimators were ‘largely
independent of the number of variables’ (Muthen & Kaplan, 1985, p. 187). Browne
(1984) however, conjectured that the number of degrees of freedom may be an
important factor in robustness studies of this kind. In the present paper we address
this conjecture formally via a Monte Carlo study that expands on our previous paper
in the following ways: First, we use a considerably larger number of replications than
in our previous study. Second, we consider a negative kurtosis case in addition to the
original five cases of our previous study. Our interest in the negative kurtosis case lies
in the fact that it may give rise to an underestimation of chi-square (see Browne,
1984). Third, we examine two levels of sample size. Fourth, and most importantly, we
consider four models of increasing size.

2. Design of the study

The design of this study follows closely that of our previous paper. In particular, we
generate continuous random normal variables y* from a known factor analysis
structure I(y*)=AW¥A'+ 0. The y* variables are then categorized in such a way as to
yield six different cases of non-normal ordered categorical variables y following a
factor analysis model E(y) with the same number of factors but with different
parameter values. A case is defined by all variables having the same univariate
distributions. A summary of the relevant statistics related to the five original cases is
given in Table 1 of our previous paper, and the distributions for all cases are
graphically displayed in Fig. 1 here.
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In addition to the five original cases and the additional negative kurtosis case, four
levels of model size were chosen. The first is a six-variable, two-factor (8d.f., 13
parameters) model. The second is a nine-variable, three-factor (24df, 21 parameters)
model. The third is a twelve-variable, three-factor (51d.f, 27 parameters) model, and
the fourth is a fifteen-variable, three-factor (87 d.f., 33 parameters) model. We consider
robustness to non-normality for two levels of sample size, N =500 and N = 1000, the
latter previously studied in Muthen & Kaplan (1985). The number of replications
within each cell of the six (cases) by four (levels) by two (sample sizes) is 1000. The
number of replications is considerably larger than that which has been previously
used in related studies, and was chosen particularly to be able to adequately assess
standard error behaviour and the rejection frequency of chi-square. From our
previous study we found no difference between normal theory ML and GLS,
therefore in this study we will only utilize the GLS estimator. In addition to the
normal theory estimators we will also study the behaviour of the ADF estimator.

The data generation and estimation were carried out by the LISCOMP program
(Muthen, 1987). Multivariate normal data were generated and categorized according
to the six cases. The multivariate normal data were created by generating uniformly
distributed random numbers as in Kennedy & Gentle (1980, p. 147), normal numbers
as in Box & Mueller (1958), and multivariate normal variates by Cholesky
decomposition as in Kennedy and Gentle (1980, pp. 294-301). The ADF estimator
uses the calculations suggested by Browne (1982, 1984), without correction for bias.

3. Results

The results for normal theory GLS and ADF chi-square are shown in Tables 1 and
2, respectively. The 95 per cent prediction interval around the expected value of 50
for the rejection frequency is 36 to 64. It should be noted here that owing to the

computationally heavy features of ADF we only report ADF results for Models 1, 2
and 3.

3.1 Performance of small model

As stated earlier, our previous study examined a four-variable, single-factor (2d.f)
model. If we compare that model to Model 1 for N=1000 in this study, we find
similar results—namely that normal theory GLS performs rather well for data with
Case 2 non-normality. Unlike our previous study however, we see that the normal
theory GLS estimator obtains too large chi-square values for data already with Case
3-type non-normality. The ADF chi-square tests are seen to perform quite well
throughout for Model 1. In addition, we replicate our previous findings in that no
parameter estimate bias is found for normal theory GLS or ADF-.

Results for GLS and ADF standard error bias are given in Tables 3 and 4,
respectively. It should be noted that throughout we find the estimated standard
errors always very close to the population standard errors. The bias is calculated as
per cent over- or underestimation of the mean estimated standard error relative to
the empirical variation in the estimates over the 1000 replications. With respect to

Table

Mea
Vari
Reje

Mea
Vari
Reje

Mes:
Varn
Reje

Me:
Var
Rej¢

Me:
Var
Rej

Me
Var
Rej

Me
Vai
Rej
“Rejec
(expec

Mod
stanc
normn
resul
wors

perfc
non-

3.2.

non-



- kurtosis case, four
vo-factor (8d.f, 13
d.f, 21 parameters)
meters) model, and
nodel. We consider
and N =1000, the
ber of replications
sizes) is 1000. The
1s been previously
adequately assess
quare. From our
y ML and GLS,
n addition to the
DF estimator.
SCOMP program
:gorized according
rerating uniformly
, normal numbers
tes by Cholesky
€ ADF estimator
-ection for bias.

1in Tables 1 and
ected value of 50
hat owing to the
s for Models 1, 2

1igle-factor (2d.f)
s study, we find
ell for data with
that the normal
iready with Case
form quite well
lings in that no

“ables 3 and 4,
mated standard
is calculated as
:rror relative to
With respect to

Factor analysis of non-normal Likert variables 23

Table 1. Normal theory GLS chi-square for all cases®

Model 1 Model 2 Model 3 Model 4
6-var/2{(8d.f) 9-var/3f(24d.f) 12var/3f(51d.f) 15-var/3f(87d.f)

Case N=500 N=1000 N=500 N=1000 N=500 N=1000 N =500 N=1000

y*
Mean 7797 7945 24046 24.034 50.837 51.062 85.857 85.955
Variance 15.880 15.840 46,961 48.843 96.590 103.072 175717 171.327
Reject freq. 46 41 56 49 49 58 46 44

1
Mean 7530  7.853 23755 24.045 50.866 50.821 86.420 86.442
Variance 14.684 15.461 45324 46.330 94.265 103.592  165.123 178.089
Reject freq. 44 39 39 52 49 53 40 53

2
Mean 8372 8410 26.085 25.805 55.090 55.050 93.039 93.488
Variance 17978  16.687 51921 51.160  121.506 126473  211.295 215.767
Reject freq. 61 61 88 76 137 138 132 139

3
Mean 9.060  9.343 27959 27.731 59.221  59.597  101.387 102.224
Variance 21354 21818 58870 63441 135440 120.690 245643 250.684
Reject freq. 93 96 138 133 229 244 294 300

4
Mean 11.015 11433 33.795  33.679 72.679  73.540  126.640 126.417
Variance 32593 31.293 92300 93370 201.186 206468  354.569 364.81
Reject freq. 190 214 364 347 618 651 777 814

5
Mean 8443  8.490 25298  25.820 54.351 54.398 93324 94.646
Variance 16.983 17.699 54.155 60.393 112976 111.831  198.444 205.263
Reject freq. 59 65 79 88 111 108 120 149

6
Mean 7.788  7.959 24.157 24.538 51.818 51.856 88.596 88.886
Variance 14.387 15.516 45.684 53189  100.782 106.069  168.790 186.268
Reject freq. 44 50 50 67 75 76 58 85

“Reject freq. denotes the frequency of samples with chi-squares greater than the 5 per cent critical value
(expected number is 50).

Model 1, we find as in our previous study that normal theory GLS estimated
standard errors are consistently underestimated for Case 3 and Case 4-type non-
normality. For ADF we observe a downward bias of estimated standard errors—a
result not found in our previous study. For both GLS and ADF the bias appears
worse for N =500 than for N = 1000.

We conclude that for small models (8 d.f. or less) the normal theory GLS estimator
performs well for Cases 1, 2, 5 and 6. ADF is preferred for Case 3 or Case 4
non-normality.

3.2 Model size effects

We now turn to the influence of model size on GLS and ADF estimation for
non-normal data. As a quality check for the number of replications, we first analyse
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Table 2. ADF chi-square for all cases Table 3.
Model 1 Model 2 Model 3
6-var/2f (8 d.f) 9-var/3f (24 d.f) 12-var/3f (51d.f)
Case N=500 N=1000 N=500 N=1000 N=500 N=1000 Case
y* 1
Mean 8.092 8.085 26.108 25.109 59.149 54.953
Variance 18.171 16.478 61.411 56.446 148499  126.465
Reject freq. 58 47 101 75 246 119 2
1
Mean 7.770 7974 25.638 25.032 59.080 54.715
Variance 16.103 15.983 58.301 52474 152.066 127.530 3
Reject freq. 54 45 84 73 218 138
2
Mean 8.012 7916 26.417 24.956 59.051 54.704
Variance 17.289 15.099 59.168 50.524 159.585 132220 4
Reject freq. 53 46 113 60 241 143
3
Mean 8.010 8.078 26.091 24.602 58.490 54.491 5
Variance 19.516 16.449 56.478 49.687 144870 128.680
Reject freq. 58 51 107 66 221 119
4 6
Mean 8.066 8.146 26.082 24.751 58.583 54.893
Variance 17.362 16.018 53.290  49.055 115.606 113.776
Reject freq. 51 49 91 63 209 126 m
5 .
Mean 8235  8.108 25715 25314 58.556  54.590 estimates.
Variance 15.455 16.254 56.138 56.516 133.673 118.124
Reject freq. 50 59 91 77 217 123
6
Mean 7.904 7.944 25.685  25.135 59.238 54763 4 mon-nc
Variance 15.478 15.788 56.644 58.363 156.140 126.698 sample si
Reject freq. 52 52 80 85 228 138 Results
square 1s
larger m«
. . . . . . . N = I(X)O.
continuous multivariate normal y*s before introducing any categorization. The y* values th
results for GLS are shown in Table 1. We find that GLS on y* performs quite well results dc
for both sample sizes and all four model sizes. Inspection of the categorized Cases 1 unless ve:
through 6 in Table 1 reveals that GLS is quite sensitive to both non-normality and chi-squar
size of model. In fact, GLS seems to behave well only for a limited set of considere
cases—either for normally distributed variables (continuous or categorical) or for Regard
Models 1 and 2 with non-normality exhibited in Cases 2, 5 or 6. Differences due to be slightl
sample size appear minor. and less ¢
Our findings regarding parameter estimates will only be reported in the text. On The re
the whole, we find very little GLS parameter estimate bias regardless of the degree of estimated
non-normality or size of model considered here. This finding is in agreement with the non-norn
GLS results of our previous study. of the m«
Standard error results for GLS are reported in Table 3. When comparing estimated N = 1000.
standard errors to empirical standard deviations the results show a clear downward Since 1t

bias in estimated standard errors that becomes increasingly worse for Case 3 or Case correlatic
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Table 3. Normal theory GLS standard error bias percentage®

Model 1 Model 2 Model 3 Model 4
6-var/2f (8d.f)) 9-var/3f(24d.f) 12-var/3f(51d.f) 15-var/3f(87d.f)

Case Par N=500 N=1000 N=500 N=1000 N=500 N=1000 N=500 N=1000

1 pl -2 0 -2 0 -2 0 0 0
0 -2 0 0 0 -3 0 -3 0
v 2 3 -2 -3 -6 -6 0o -3
2 A -2 0 -3 0 0o -3 -2 0
6 -6 -7 -9 8 -7 -3 -9 -7
v -2 -3 -7 =7 -8 -5 -6 -6
3 i o—15 —12 -13  -12 -13  —13 -3 -13
6 —18 —16 -17  —16 -7 -18 —21  —19
v o =11 -9 —11 —11 -4  -12 -1 -11
4 i -8 -29 -29 28 -29 -29 -30 -2
0 -3  -30 -3 =32 -34  -33 -35  -35
v o -23 -2 -23 -23 -2  -23 -23 -2
5 i —18  —17 ~18  —18 -2 -1 -2 -9
0 -20 —17 -20 —18 -24 -23 -23 -4
" -6 -4 -7 -6 -7 -9 -6 -5
6 A 7 8 6 9 10 11 10 15
9 1 3 0 1 2 3 2 3
v 0 3 B -6 =5 -2 -3

“In parentheses is given percentage under- or overestimation of the empirical standard deviations of the
estimates.

4 non-normality. The results also show that the bias is roughly constant across
sample size and model size.

Results for ADF chi-square tests are displayed in Table 2. We find that ADF chi-
square is quite sensitive to model size even for the multivariate normal y* case. For
larger models, the chi-square behaviour is considerably worse for N =500 than for
N =1000. There is a tendency, however, for ADF to give somewhat lower chi-square
values than GLS for data with Case 3 or Case 4 non-normality. Nevertheless, the
results do not support the use of ADF for improvement of chi-square for Model 3
unless very large samples are available. It seems likely that the behaviour of the ADF
chi-square tests would deteriorate even further for larger models than those
considered here.

Regarding ADF parameter estimates, the results show a tendency for estimates to
be slightly biased for large models with Case 4 non-normality. For smaller models
and less severe non-normality, very little ADF parameter estimate bias was found.

The results for ADF standard errors are displayed in Table 4. We find ADF
estimated standard errors to be biased downward, becoming worse with degree of
non-normality. Unlike GLS, ADF standard error bias also becomes worse as the size
of the model increases. The size of the bias is reduced when going from N =500 to
N =1000.

Since the models considered here are scale-free, we may choose to analyse the
correlation matrix instead of the covariance matrix. The asymptotic covariance
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Table 4. ADF standard error bias percentage

Model 1 Model 2 Model 3
6-var/2f (8 d.f) 9-var/3f(24df) 12-var/3f(51d.f)
Case Par N=500 N=1000 N=500 N=1000 N=500 N=1000

1 A -5 -1 -9 -6 —-14 -7
0 —4 -2 -9 -3 —15 -1

v -3 1 -9 -8 -17 —-11

2 A -5 -3 -7 -3 —16 -8
0 -5 -3 -10 -4 —15 -8

1/ —11 2 -10 -7 —16 —8

3 A -7 -5 —-10 -5 -20 —-10
0 -5 -2 -10 —4 —16 -9

¥ -5 0 —10 -1 —18 -9

4 A -9 -5 —16 -6 —-24 -13
0 -6 —4 —14 -6 —18 -8

v -9 -1 -17 -10 -23 —14

5 A -5 -3 —13 -6 -19 -9
0 -3 0 -10 —4 —15 -1

¥ -7 -4 -12 -8 -19 —-11

6 Y} —4 -2 -9 —4 —15 -1
0 -5 -1 -9 -5 —16 -8

v -2 0 -8 -5 —16 -10

matrix for correlations under both normality and non-normality is given in, for
example, Steiger & Hakstian (1982). For computations in the normal case, see also
Jennrich (1970). Regarding computing the ADF type asymptotic covariance matrix
for correlations, see Mooijaart (1985). However, when studying a selected set of cases,
no improvement was found for either chi-square or standard errors when using a
correlation matrix instead of a covariance matrix. In fact, the use of the correlation
matrix gave slightly worse results.

3.3 Chi-square distributions

In line with suggestions from a reviewer, we also decided to augment the Monte
Carlo information presented above with Q-Q plots of the chi-square test values for a
limited set of scenarios. For each of these scenarios, percentile values for the 1000
observed chi-square values were calculated and plotted against the corresponding
theoretical chi-square values. If the observed chi-square values are well behaved, the
plot would approximate a 45 degree line through the origin. If not, a transformation
of the observed chi-squares might be suggested. We chose the scenarios Case 2,
Model 2; Case 4, Model 2; Case 2, Model 4; and Case 4, Model 4. Only NTGLS was
studied, using a sample size of 500. The choice of NTGLS rather than ADF was
made to see if this simpler estimator could be given a chi-square correction. The plots
of the four scenarios are given below in Figures 2-5.

We note the plots do suggest linearity throughout most of the range. To more
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easily compare the lines, a linear regression of the observed on theoretical chi-squares
was performed. Only the middle values corresponding to the middle 90 percentiles
were used in these regressions to obtain more stable results. In order of the figures,
the estimated intercepts and slopes were: —1.21, 1.13; 0.82, 1.05; —8.61, 1.37; 3.90,
1.22. 1t appears that although the plots show a large degree of linearity, a simple
scaling correction of the observed chi-squares is elusive. The parameters of the lines
change as a function of the degree of non-normality and the size of the model.
Further research is needed in this area.

4. Conclusions

In conclusion, this study has added to previous work by considering the size of the
model within a considerably larger simulation framework. The results show that, for
models of realistic size, the chi-square and standard errors of normal theory GLS are
not as robust to non-normality as previously believed. In addition, ADF does not
appear to work well as a means of compensating for the effects of non-normality
unless the model is small and N is large. For continuous variables, similar
conclusions have recently been reached by Harlow, Chou & Bentler (1986) who
studied normal theory ML and ADF. Our findings that GLS standard errors are
only affected by degree of non-normality, while GLS chi-square, ADF chi-square and
ADF standard errors are affected by both non-normality and model size may
warrant further theoretical work.
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