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Estimators of the predictive validity of a multifactorial test are cpnsidered.
These estimators take into account the selectivity of the sample of thosc
who have observations on the criterion measure. It is pointed out that the
selectivity problem can be viewed as a missing data situation. The
relationships between the classic Pearson Lawley adjustment, regression
based on factor scores, and maximum-likelihood cstimation under ignorable
missingness are described. The eslimators are compared in a study of
artificial population data.

1. Introduction

This paper considers the selection of individuals using a multifactorial test and the
assessment of criterion-related validity of the selection instrument. Such selection
routinely takes place in placing military personnel in various specialties with job
performance as criterion and in admitting students to various schools with first-year
grade peint average as criterion. Most often a composite measure related to the total
test score or subtests are used in such selection. We will argue, however, that the use
of a multiple factor latent variable model for the observed variables comprising the
test can make more efficient use of the test information. This is in line with
arguments for latent variable modelling of broad and narrow abilities recently
presented by Gustafsson (19884). Explicit use of the latent variable model for
selection may also be beneficial. Even when the latent variable model is not used for
selection, it can provide more detailed information in the validation stage.

Correctly assessing the predictive validity in traditional selection studies, without
latent variables, is a difficult task involving adjustments to circumvent the selective
nature of the sample to be used for the validation. Adjustment for range restriction is
commeonly carried out by Pearson-Lawley corrections. As we will see, the use of a
latent variable model produces further complications related to selection. This paper
will focus on the technical issues involved in criterion-related validity assessment

FThe research described in the paper was funded by the Graduate Management Admission Council, Los
Angeles, USA. The GMAC encourages researchers to formulate and freely express their own opinions, and
the opinions expressed here are not necessarily those of the GMAC.

IRequests for reprinis,
§Now at the Foundations of Education, University of Florida.



256 Bengt O. Muthén and Jin-Wen Yang Hsu

using a latent variable model. While the work of Gustafsson (19884, b) dealt with
latent variable modelling in predictive validity contexts, it did not address selectivity.
Mutheén (1989) dealt with selectivity in a latent variable model for an admissions test,
but not in the context of predictive validity, In this paper, the two issues will be
studied together. An efficient estimator which appears not to have been previously
used m predictive validity studies will be proposed.

2. The latent variable models

Latent variable modelling of the components of a test in relation to a criterion
variable provides more precise predictor variables, and may include factors which
have a small number of measurements. The strength of latent variable models in
identifying individual differcnces in both broad and narrow abilities has recently been
stressed by Gustafsson (19884), alse reviewing related literglure on the predictive
valuc of tests and aptitude-treatment interaction. For many ability and aptitude tests
it is relevant to postulate a model with both a general factor influencing all
components of the test, and specific factors influencing more narrow subsets. For
sclection into special training programs the added information of the specific factors
may be mmportant. Consider as an artificial example the model of Fig. 1. The
observed variables of the test arc denoted by x and the criterion by y. The general
factor is denoted as #s and the specific factors are denoted xy,, #5, and #g;. On the
x-side of the model, the fact that these factors arc assumed to be uncorrelated means
that a multivariate variance component modelling is achieved, where the relative
contributions of these factors to the variances in the x variables can be studied,

The various paths from the »s to vy reflect the differential predictive power of the
general factor versus the specific ones as well as among the specific ones. While the
general factor may always be important, different specific factors, or combinations
thereof, presumably have different importance for different sefection purposes, such as
different specialties in the military. If the values of the factors were known, a selection
procedure might involve choosing individuals who have particularly high values on
the relevant specific factor, or combination of specific factors, while maintaining a
certain minimum standard with respect to the general factor.

Another example of a latent variable structure for a test used for selection is given
by Muthén, Shavelson, Hollis, Kao, Muthén, Tam, Wu & Yang (1988), presenting a
standard confirmatory factor model with oblique factors to describc 24 item
composites created from items of the GMAC admissions test for graduate school of
business and management, the GMAT. The estimated, simple structure five-factor
model for a sample of 55279 test takers is given in Tablc 1.

Formally, a latent variable model used to predict a criterion variable may be
written as

x=v+An+e (1)
y=o,+fn+E 2)

In (1) x is a vector of p test variables, A is a p x m matrix of factor loadings, » is the
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Figure 1. Artificial latent variable model.

vector of m factors, ¢ is a vector of p measurcment crror variables; in (2) «, is an
intercept parameter, ff is a vector of m slopes, and ¢ is a residual. Let E{n)=u,
Vigy="F, Vie)=0, and V(&)= .. With ordinary assumptions,

. =AYA' +0, (3)
g.,.=AYE, (4)
T =Y+, (5}
Let
o0
o= Tty 6
. [2} (6

We note that this model assumes that the factors of # and the residual ¢ are the
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Table 1. Standardized estimates for GMAT simple siructure factor model (N =55279)

Factor
Verbal Quantitative
General Specific General  Specific
Sentence Corr. & Minor Other Speed &
Section reading comp. key key  Accuracy accuracy
Verbal
Sentence Vi 588
correction V2 599
V3 625
V4 650 —.024
Analysis of V35 044 598
situations V6 662
V7 356 A54 " —.002
V3 —.044 647
V9 765
Vio 076 603 109
Reading Vil 573
comprehension Vi2 630
Vi3 622
Vid 597 {080
Quantitative Q1 —.123 1t 084
problem Q2 —.047 525 335
solving 1 Q3 046 —.148 838
Data Q4 635
sufficiency Q35 119 492 .034
Q6 —.026 244 530
Q7 78 — 088 657
Problem Q8 —.05%4 739 —.07t
solving 2 Q% —.026 645 218
Q10 846
Factor 1.000
correlations 577 1.000
668 674 1.000
583 620 557 1.000
268 411 433 687 1.000

Note. Empty entries in the factor loading matrix correspond to elements fixed at zero.

only relevant predictors of the criterion y. The model is misspecified whenever
omitted predictors of y are correlated with 5 or ¢ (or correlated with x).

3. Selection issues

In standard predictive validity studies, using observable predictors x, it is clearly
recognized that the assessment of validity must take selectivity into account.
Observations on y from a random sample of the population of those who took the
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test are not available, but only observation from those who were selected. These
observations may be viewed as a random sample from a selected population. We will
call the sample observations the matriculant sample corresponding to a matriculation
population. Given estimates from a matriculant sample, the classic Pearson-Lawley
selection formulas are frequently used for adjustments to avoid bias and make the
inference to the test taker population more appropriate. Given a random vector z
and a vector of selection variables s, these formulas give the relation between the test-
taker population and the matriculant population (indicated by asterisks)

1 =t + BuF — py), (7
=L, +B(Zi-ZJB, ()
IX=BXf, ' {9)

where B=X_¥.' (see for example Johnson & Kotz, 1972). These relations provide
the corrections needed to obtain X from X*, namely the ‘Pcarson-Lawley
correction’ formula

S -TE-SEEX (Zh-L EX 'TE. (10)

These formulas assume that the regression of z on s is linear and homoscedastic.
Given an estimate of ¥ based on a random sample of the selected population, (10)
shows that an estimate of Z_, is obtained as soon as estimates of Z*, £, and X¥ are
available. Fstimates of the latter three matrices can be obtained, for example through
a suitable, large reference sample and knowledge about the selection procedure. In
many instances, the selection process is not exactly known and x =s is assumed as an
approximation. It is well known that when the true selection process is such that
x=s, the selective nature of the sample does not cause bias in the regression of y on
x. The resulting incidental selection on the dependent variable y is fully accounted for
by the exogenous wvariables of x. Here, Pearson-Lawley corrections are needed only
to avoid bias in the correlations between y and the xs due to the restriction of range
in x.

Consider now a latent variable model for the set of xs. The latent variable
modelling presented in the previous section can be estimated with standard covar-
iance structure techniques, see for example Muthén (1984, 1987). As before, however,
standard application of such modelling will give biased results vis-a-vis the popula-
tion of test takers if applied to the matriculant sample. We will study this bias by
considering the following three kinds of selection procedures. In each case we assume
a univariate s that is linearly related to a set of variables that influence the sclection,
either in the form of a linear regression or deterministically.

3.1. Selection based on the factors n

Consider first selection determined by the latent variables of » as it affects the x-part
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of the model, X .. Although in practice # is unknown, this case is of practical
importance for two reasons. First, an approximation of ¥ may be obtained for each
individual in terms of estimated faclor scores. Second, this case includes the situation
where selection is based on predictors of #, where the predictors have no direct effects
on x but affect x only indircctly via #. This case was for example studied by Meredith
(1964) and Muthén & Jdreskog (1983), who pointed out that this type of selection
does not distort the factor model structure per se, but leaves v, A, and ® unchanged
with a change in E(y)=2 and V{y)=¥. The factor variables of » act as exogenous
variables in the x-part of the model. We note that this brings the results in line with
the standard regression situation with observed cxogenous variables, where the
regressions are unaffected by selection on the exogenous variables, while the
exogenous variable distribution is naturally affected. Adding v to the variables
considered, it is clear that this extra variable may be viewed as onec more
measurement of the factors. This reinterprets the slopes fis as loadings and the
residual variance of . as measurement error variance and it follows that these
parameters are unchanged. Hence, if sclection was based on the factors of , perhaps
as approximated by estimated factor scores, the regression of y on # would not be
distorted. However, the correlations between y and the xs are biased due to
restriction of range in 3. Regular Pearson—Lawley corrections could again be carried
out for the estimated correlations among these variables.

3.2, Selection based on the observed predictors X

Consider next selection determined by the observed variables of the test x. This
covers both cases where sclection is madc on the test alonc and where selection is in
addition based on variables not observed (or not entered into the model} which are
uncorrelated with x and y. This situation was studied in Muthén (1989}, where it was
pointed out that a distorted factor structure for x results in the matriculant
population.

3.3. '‘Non-ignorable’ selection

Consider last the case of selection determined by x and other unobserved variables
correlated with the residual &. This covers cases where the test is an important factor
in the selection but other variables such as high school graduation, grade point
average, and the like are important. When such other variables can be assumed to
influence both selection and y, correlations with & arise. This may be the most
common selection situation. This implics selection that is directly related to ail
endogenous variables of the model and it follows that distortion of all parts of the
model will arise.

4. Estimation

Let us now focus on the estimation of the latent variable model of x and y. We will
assume that information on a random matriculant sample is available as well as a
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random sample of test takers, part of whom may be in the matriculant sample. Four
gstimation procedures will be mentioned.

4.1. Using the matriculant sample (the LOL estimator)

Consider first the straightforward estimation using only the matriculant sample,
From the discussion of the three selection situations we conclude that unless selection
is determined by 7, the test taker population model will not be correctly estimated,
This estimator will be calied LQL (see 4.4),

4.2, The factor score estimaror

A second estimation approach is as follows. Given that the ultimate interest is in
assessing the predictive strength of the factors of #, it may be natural to attempt the
use of estimated factor scores as proxies for # and regress y on these proxies for g,
and other predictors. The regression method of factor score estimation (see, c.g.,
Lawley & Maxwell, 1971, p. 109) takes the estimated . € say, as

f=a+¥AT (x—v—Ac). (1N

Here it 1y assumed that Z,, follows the factor analysis model of (3). In the case of a
random sample it is well known (Tucker, 1971) that with the regression method of
estimating factor scotes, regressing y on f and other predictors would give consistent
estimates of these regression coefficients. While sample covariances between y and f
and the sample covariance mairix of f are in this case both inconsistent estimators of
the corresponding population quantities, these biases cancel out in the regression
coefficients.

In the presecnt case of a selective sample, it is clear that the case of selection based
on x discussed in Section 3.2 will still give consistent estimates of the regression
coefficients. The estimated factor scores are simply a linear transformation of the
observed predictors, and selection based on observed predictors does not bias the
regression. Note that this assumes that the model parameters are known or are
estimated from large enough samples to be considered essentially non-stochastic. The
unbiasedness is clearly seen when constdering the case of s=w'x, where x is the set of
test variables. This will now be shown,

In the matriculant population the covariance mairix of fis

ZF= PAR ! zrxz;; AY, (12}
where by (8)
TAEE T =5l L oww (13)

The covariances between f and y in the matriculant population are

Cov(f, y)* =WAZ ! Covix, y)*, (14)
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where by (12}

Covix, ) =AY+ wZ ww AV
=2 _(Z '+ oww)APS (15)

Collecting terms we find that the regression of y on fis unbiased,
Cov (£, ¥}/ !
=PWAE L + oww)AP[FAE ' + woww)AP] !
= (16)

The factor score estimation approach would use the test taker sample to estimate the
parameters involved in (11), compute f for the matriculant sample, and compute the
regresston of y on f and other predictors from the matriculant .sample. A standard-
ized solution can be obtained by using thc covariance matrix for the predictors
estimated from the test ftaker sample, which would avoid the biases of using the
matriculant sample. For example, for f the test taker estimate of ¥ would be used.

4.3. The Pearson-Lawley estimator

A third estimation approach is as follows. One may use the matriculant sample to
estimate £¥, as the matriculant sample covariance matrix. Using sample information
from the test takers and assuming that selection is determined by x, a Pearson—
Lawley correction can then be made to this covariance matrix to obtain an estimate
of the test-taker population Z__. The latent variable model may then be fitted to the
estimated Z_, using standard covariance structure methods.

4.4. Maximum likelihood under ignorability (the FQL estimator)

A fourth, and more refined estimator is available. For this estimator we note that the
test-taker and matriculant samples may be viewed as an cxample of missing data; test
takers that are not among the matriculants may be viewed as having missing data on
y. Missing data theory is discussed in Little & Rubin (1987). It is shown that under
the assumption of ‘ignorability’ of the missing data mechanism, correct maximum
likelihood (ML) estimation can be provided by using the matriculant and test-taker
sample information jointly in the estimation, In our formulation of the three selection
situations, ignerability is obtained when the missingness on y can be predicted by X,
but not in the other two cases. For purposes of estimating the model parameters, the
log likelihood of the sample can then be simplified as

N Nm
log L=} log f{x)+ 3 log f{y]x), {17

i=1 i=1

where N is the total sample size of the tesf-taker sample, Nm is the part of the test-
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taker sample that constitutes the matriculant sample, and [ represents various
densities assumed to correspond to the multivariate normal distribution.

Consider equation (17) for the case of no latent variable structure on x with y
regressed on x. The second term on the right-hand side of (17) contains the
regression parameters, while the first term contains the parameters of the marginal
distribution of x. It follows that, under ignorability, proper ML estimation of
regression parameters is obtained using only the matriculant sample and that the
test-taker sample provides ML estimation of the parameters of the x distribution,

The maximum-likelihood theory under ignorability presented by Little & Rubin
(1987} gives the following maximum-likelihood estimators when the latent variable
structure is not imposed (‘unrestricted” case) and selection 1s determined by x. While

¥, is estimated by the test laker sample covariance matrix §,, we have the ML
estimates for the unrestricted case

(jq‘}m = S::S:f\,' ! S((, % (18)

Gy =5 —ShSE (85 —SISL s, (19)

where the asterisk refers to statistics obtained from the matriculant sample of size
Nm. The first term on the right-hand side of both {18) and (19) is the estimate
obtained by the matriculant sample alone while other terms represent the corrections
neceded Lo obtain ML estimates. We note then that sample information on x for
individuals who do not matriculate is actually used to obtain ML cstimation of both
x- and y-related parameters.

Comparing equations (18), {19) with (9), (10) shows that the Pearson-Lawley
estimation of L__ in the third estimator schemc that we suggested above is actually
the same as the ML cstimator of (18) and (19) when using selection based on x.

Muthén, Kaplan & Hollis (1987) discussed related missing data issues applied to
latent variable structural equation modelling. Muthén et al. also described an analysis
technique which is directly applicable to our situation and uses existing structural
modelling software that handles mean structures in conjunction with covariance
structures. Hence, this approach can be used to go beyond the unrestricted
estimation above and to apply the latent variable structure in a ‘restricted’ analysis
that uses the hypothesized factor model. The idea is based on rewriting the log
likelihood equation of (17} as

Nm N
logL= 3 log f(x,y)+ » logfix). (20)
i—1 i—Nm+1

While equations (17) and (20) are algebraically equivalent, (20) has the interesting
implication that standard multiple group structural modelling can be used for the
estimation. The two terms of the right-hand side of (20) correspond to the test takers
who do matriculate and the test takers who do not matriculate, respectively. A
simultanecous analysis of these two groups, with different number of observed
variables in the two groups and across- group equality restrictions on c¢ommon
parameters yields ML cstimates of the latent variable model parameters. Muthén et
al. describe how to set up this analysis using the LISCOMP program (Muthén,




264 Bengt O. Muthén and Jin-Wen Yang Hsu

1987). They also show how the model can be tested against the alternative of an
unrestricted covariance matrix for x and y.

It is interesting to note that the LQL estimation scheme that we discussed in 4.1,
estimating the latent variable modcl from matriculants only, corresponds to using
only the first term on the right-hand side of (20). The selection bias of this estimator
may then be rephrased as follows. When a latent vanable structure is imposed on the
marginal distribution of x, as opposed to the situation of an ordinary regression of y
on x, the sccond term must alse be included in order not to obtain biased estimates.
While the ordinary regression casc avoids bias in the regression parameters, this way
of estimating the iatent variable model does not avoid bias in any of the model's
parameters.

Muthén et al. termed the estimation approach based on both terms of (20)
estimation by FQL (full, quasi likelihood) to emphasize that it may be used also
when ignorability is not at hand, in which case true maximum likelihood estimation
is not obtaincd. They showed that in cases of non-ignarability the FQL estimator
compares favourably with the standard listwise present estimator, LQL (listwise,
quasi likelihood). The LQL cstimation is the same as the first estimation scheme that
we have discussed, using only the matriculant sample, or the first term of (20).

4.5. Comparing estimators

It is interesting to note the differences in assumptions behind the Pearson-Lawley
corrections and ignorability of the missing data approach used for the FQL-estimator
as they relate to our three simple selection schemes in sections 3.1, 3.2, and 3.3.
Pearson--Lawley corrections build on the assumption of the x and y being linearly
related to the selection variables s with homoscedasticity in these regressions.
Ignorability assumes that conditional on x, y and s are independeni. Assume for
simplicity that all variables of the model, including s, have a multivariate normal
distribution. In our first selection scheme, with selection determined by #, the
assumptions behind Pearson-Lawley corrections are fulfilled, but not the assump-
tions behind ignorability. In our second selection scheme, with selection being
determined by x, the assumptions behind both Pearson-Lawley and ignorability are
fulfilled. Tn our third selection scheme, assuming selection determined by x and
variables correlated with the residuals ¢ in the y regression, the assumptions behind
Pearson—-Lawley are fulfilled while those behind ignorability are not. The advantages
of Pearson-Lawley are, however, to some extent lost if the selection process is not
known and selection on x has to be assumed as is usually the case.

It is of interest to compare all four of the estimators discussed: LQL, the factor
score approach, analysis of the Pearson-Lawley corrected estimate of X, and FQL.
The LQL estimator has known biases but it 15 of interest to sec how large these
biases will be since the use of the matriculant sample only corresponds to a very
common way of doing validations stodies. The factor score approach gives unbiased
estimates as long as the ignorability assumption holds, since the incidental selection
on y is then fully accounted for by the predictors. The third estimation techmique
uses the Pearson—Lawley assumptions to correct the biases of LQL while the fourth
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technique, FQL, uses the ignorability assumption. If both assumptions are true, the
maximum-likelihood property of FQL makes it the most efficient estimator. If only
the Pearson—Lawley assumptions ar¢ truc or if none of the two sets of assumptions is
true, FQL’s advantage may be lost. We will illustrate the biases of these estimators in
a population study that builds on the latent variable models discussed in Section 2.
Further understanding of the comparative behaviour of the estimators can be
obtained by a Monte Carlo study to investigate sampling variability with various
forms of violations of the iwo sets of assumptions. This is beyond the scope of this

paper.

5. Examples

Two examples will be studied. They correspond to the two latent variable
measurement structures of Section 2. The first model involves a general factor and
three orthogonal specific factors., while the sccond model involves five oblique factors.
Two of the three types of selection discussed in Section 3 will be illustrated. For the
first model, sclection based on x will be illustrated, where x contains the set of test
variables for which the latent variable model holds. For this type of selection, the
factor score and Pearson—Lawley estimation approaches will give the same results as
FQL since a population study is carried out and the assumptions are fulfilled for all
these estimators. For the second model we illustrate selection based on a variable
which is a function of not only the test variables but also another observed predictor,
as well as an unobserved component which is correlated with the residual in the
prediction equation of y. In this case, each of the estimators is in violation of its
assumptions. These two examples will give a rough indication of how the estimation
procedures compare in ierms of large-sample bias.

5.1, Example 1

Consider the latent variable model represented by Fig. 1. Assume the test-taker
population values for the paramcters of this model given in the leftmost column of
Table 2. The measurement parameters of the factor model for the x distribution
represent a set of highly reliable indicators of the factors. The variance component
interpretation of the model can be explicated as follows. The general factor accounts
for 39-76 per cent of the variation in each test variable, while the specific factors
account for 24-41 per ceni. All factors are uncorrelated. The criterion variable
regression on the factors has a population R* of 50 per cent. The true population
stopes are all 4, corresponding to standardized values (unit variances for the #s and
for y) of .535 for the general factor and .267 for each of the three specific factors.
Hence, we assume that the general factor is the most important one in predicting y.
Measurement intercept values of zero and factor means of zero were chosen.

Given this model and its parameter values, the population mean vector g, and
covariance matrix X_. were created for x and y. Selection based on an unweighted
sum of the nine x variables was assumed, so that the assumption of ignorability
holds. Inclusion in the matriculant population corresponded to exceeding a threshold
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Table 2. LQL estimates for an artificial latent variable model

Estimate
Parameter 500 25%, 109

Parameter value selection selection selection

Measurement parameter loadings

A1.1) 0.600 0.256 0.148 ¢.0t7
H2,0) 0.700 0.329 0.219 0.087
A3, 0.800 0.403 0.290 0.149
A4, 0.900 0477 0.363 0.215
A5,1) 0.600 0.255 0.146 0.013
26,1) 0.700 0.328 0.217 0.087
H1.D 0.800 0.400 0.284 0.146
M8.D 0.900 0475 0.357 0212
M0 0.600 0.254 (141 —0.003
Regressign parameters estimate
Parameter 500, 25%; 10%,
Parameter value selection selection selection
Raw solution
B 0.400 0.153 0.084 0.001
g} 0.400 0.358 0.336 0312
K2) 0.400 0.357 0.334 0.308
B(3) 0.400 0.356 0.330 0303
() 0.280 0.289 0.294 0.297
Standardized solution
B 0.535 0.240 (135 0.001
1183 0.267 0.279 0.268 0.246
B(2) 0267 0.279 (0.268 0.245
B(3) 0.267 0.279 0.267 0.244
() 0.500 0.709 0.767 0.820

on s, where s was assumed to be normally distributed. Thresholds corresponding to
the matriculant population consisting of the upper 10, 25 and 50 per cent of the s
distribution were used. In each case, a matriculant population mean vector u¥* and
covariance matrix ¥ were also created in line with the Pearson-lawley formulas of
(7) and (8). A non-matriculating test-taker population was also created in each case
corresponding to the complementary group of those who did not exceed the
threshold on s.

Analyses using the FQL and LQL estimators were then carried out on these
population mean vectors and covariance matrices. We note again that the Pearson-
Lawley and factor score approaches would give the same results as FQL. For FQL,
equation (20) postulates the use of the x, y mean vector and covariance matrix for
matriculants (see the first term) and the x mean vector and covariance matrix {or the
non-matriculating test takers (see the second term). For LQL only the matricuiant
covariance matrix need be used. In each case the model was tested against the
unrestricted alternative to obtain a chi-square test of model fit. The analyses were
carried out by the ML estimator of the LISCOMP program.

For FQL the chi-square test of fit indicated perfect fit and the estimates were
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identical to the population values in all cases. This verifies the consistency of the
FQL estimator in this case where ignorability holds. For LQL non-zero chi-square
test values indicated that the model does not hold for the matriculant covariance
matrix. The LQL estimates are given in Table 2 above.

The measurement parameter estimates show a sharp decrease in LQL estimated
reliability for the x variables. While the estimated loadings decrease with increasing
selectivity the measurement crror variances and factor variances remain constant at
the true population values {and are therefore not reported). The estimates of primary
interest in a validity study are thosc of the regression of y on the #s and these are
given both in raw and standardized form i Table 2. The B coefficient without a
subscript refers to the slope for the gencral factor., We note from the standardized
solution that the selection on the sum of xs induces a strong reduction of the
importance of the general factor, so that the specific factors incorrectly appear as the
more powerful predictors, This is natural since the total test score is a proxy for the
general factor and its vanation is strongly reduced by the selection. It is interesting to
note that in contrast the standardized slopes for the specific factors decrease much
less dramatically as the selection percentage decreascs. The unexplained portion of
the variation in the criterion variable is overestimated and the overestimation
increases with increasing degree of sclectivity.

3.2, Example 2

Consider next the measurement model of Table 1 corresponding to the five-factor
structure of the GMAT test (cf. Muthén, 1989). In our present example this
measurement model wili be augmented by another observed predictor variable which
may be thought of as undergraduate grade point average (UGPA). The values of the
correlations between the five factors of the GMAT and UGPA are taken from
previous analyses by Muthén et al. (1988). The GMAT and UGPA scores are -used
for selection into MBA programs and 1t is assumed that these variables predict first-
year grade-point averages (FYA). Selection is however influenced by many other
factors. We will consider the model for selection and FYA prediction indicated in
Fig. 2. Here, the selection variable s is influenced by each of the test variables, by
UGPA, and by a residual 4. The residual § is taken to be correlated with the FYA
residual &, to illustrate the mfluence of left-out variables which influence both FYA
and s and which are correlated. 1t is assumed that FYA is linearly related to a
weighted sum of the five factors and UGPA. The R? in FYA is taken to be 50 per
cent. The factors and UGPA are taken to have variance one, UGPA is taken to have
the weight 4, so that its direct effect 1s contributing to 16 per cent of the FYA
variance. The weights of the factors are taken to be equal. The selection variable s is
taken to be linearly related to a weighted sum of the 24 test variables and UGPA.
The weights of the test variables are chosen so that the total contribution to s
corresponds closely to the GMAT test (see also Muthén, 1989). The weight of UGPA
is chosen to be about half of that of the GMAT test (this is in line with findings in
Muthén, Hollis, Muthén & Tam, 1991). Two R? values for s are used, 50 per cent
and 75 per cent. The residuals in the s and FYA ecquations are taken to have a
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Figure 2. Selcction and FYA prediction.

correlation of .25. A correlation of .50 is also studied. To give a more realistic picture,
a distortion in the factor model is also introduced. The population values are here
generated by the sample covariance matrix for the 24 test variables analysed in
Muthén er al (1988), while the estimators assume the simple factor structure of Table
1. Since the model fit is not perfect, although quite good, a model misspecification is
introduced. This also has the advantage of avoiding artificial agreement in the results
of some of the estimators due to using a population study with a correct model.
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Table 3. Parameter cstimates by FQL, LQL and FS. R* in s is .50, 25%, selection

269

Estimator
Structural Parameter FQL (%) LOL (%} FS (%,
Raw solution
Residual 500 484 (—03.208 A83 (—03.40) 496 (—00.80)
B for VG 116 084 (—27.69) 077 (—33.62)  .0B3 {2845
B for ¥S1 16 106 (—08.62) 098 (—15.52)  .106 {—08.62)
B lor VS2 116 107 {—07.76) 099 (—14.66) .110(—05.17)
B for QG 116 098 (- -15.52) 088 (—24.14y 099 (—14.66)
B for QS 116 095 (— 18,10 091 (—21.55)  .094 (—18.97)
B for UGPA 400 343 (—14.25) 348 (—13.00) 343 (—14.25)
Standardized solution

Residual 500 570 14.00) 674 3480) 688 ( 37.60)
B for VG e .097 (—20.69) 091 (--21.55) 107 (—07.76)
B for VS1 116 e (0 00,00y 15 (—0086)  127( 0948)
B for ¥S2 16 _117( 00.86} A7 (0 0086)  1364{ 1724
B for QG 116 106 (--08.62} 04 (—10.34)  128( 10.34)
B for QS 116 03 (—11.21 07 —7.76) 123 ( 06.03)
B for UGPA A00 Aa72 ( 07 00} 360 (--10.00y 476 (1 19.00)

Table 4. Paramcter estimates by FQL, LQL and FS. R in s is .73, 259 selection

Estimator
Structural Parameter FQL (%) LQL (%) FS (29)
Raw solution
Residual 500 490 (—02.00) 489 (--02.200 501 (¢ 00.20)
B for VG 116 077 (—33.62} 069 (—40.32) 076 ({3448
B for VSI 16 .104(—1() 34} 091 ( 21.55) 104 (—10.34)
B for VS§2 116 106 (--08.62) 094 (—1897) 108 (—06.90)
B for QG 116 093 (—19.83) 080G {—-31.03) .095(—18.10)
B for QS 116 .090 {~22.41) 085 (-26.72) 089 (—23.28)
B for UGPA 400 330 (—17.30) 34t (—1475)  330(—17.50)
Standardized solution

Residual 500 593 18.60) J5T( 5Std40)  T72( 54.40)
B for VG 116 085 (—26.72) 086 (—25.86) 108 {—06.90)
B for VSI 116 A4 (—=01.72) 13 (—02,59)  138( 1897
B for VS2 116 A7 (0 00.80) d16( 00.00)  .149( 2845
B for QG d16 A03 (—11.21) J00 (1379 137 ( 18.10)
B for QS 116 099 (—14.60) 106 (—08.62) 129 ( 11.21}
B for UGPA A0 363 (—09.25) 342 (— 1450 509 ( 27.25)

Tables 3 and 4 give the estimates from the three estimators LQL, factor score, and
FQL. Pearson—Lawley i3 not reported, since it turned out to be very close to FQL.
This 1s because we have a population study where the model holds true, except for
the minor deviations in the factor structure of the test. In line with the discussion in
Section 4.4, Pearson--Lawley can be seen as merely a less efficient estimator than
FQL, not fully ufilizing the model structure.

For simplicity, measurement parameter estimates are not reported, but only




270 Bengt O. Muthén and Jin-Wen Yang Hsu

structural coefficients. Unstandardized and standardized values will be reported only
for 25 per cent selection and residual correlation of 25, since it was found that the
relative performance of the estimators was the same for other values. For the
coefficients of the structural equation of FYA, percentage bias is given in parentheses.
Table 3 refers to an R* of 50 per cent in s. We note that there is a remarkable degree
of similarity of FQL and LQL bias. This calls into question whether or not the extra
computational effort of FQL i1s worthwhile. Note, however, that FQL does better
than LQL in terms of estimated R* for FYA. The FS estimator is for some
coefficients better than both FQL and LQL.

Table 4 gives the corresponding results for an R? in s of 75 per cent. This higher
R* value was chosen for the following reason. The full potential of FQL may be
achieved only when the observed background variables explain selection well. In
practice this would mean that more variables related to selection should be included
in the model. In our study, we can simulate that situation by increasing R?. As is
seent in a comparison of Table 3 and Table 4 results, this change in s R? has a
dramatic impact. The advantage of FQL over LQL is now clear. For the estimated
R? in FYA, there is a considerable difference. The correct R® is 30 per cent. FQL
obtains a value of 41 per cent whereas LQL obtains a value of 24 per cent, The
standardized solution now shows the factor score estimator to be more hiased overall
than FQL.

6. Discussion

The proposed FQL estimator works best when sclecting on x, where x determines
selection to a high degree. It will be useful in studies with traditional selection, say in
the form of a simple sum of test variables. In such cases, a latent variable model is
presumably not contemplated. Here, latent variabic modelling may come into play in
secondary analyses with the aim of investigating which factors are most important in
the prediction. Given such successful latent variable modelling suggesting differential
impact of different factors, the researcher might mn a future study attempt to sefect
individuals based on x rather than on x. This may be done by estimating factor
scores for the test takers, although this will result in estimation errors and will not be
the same as selecting on #. Validation should then not be carried out by regression of
¥ on the estimated scores, since according to the model these are not the assumed
predictors but the variables of # are. Since factor scores are computed as a function
of the observed x vector, such selection is determined by x and the assumption
behind FQL is still fulfilled. Hence, FQL would be the appropriate validation
technique also in this case. Although selection then takes place on variables closely
related to the predictor variables of #, there may well be sufficient matriculant
variation in these predictors for stable estimation of the latent variable model.

The usefulness of the FQL estimator for latent variable models has wider
implications than for predictive validity problems. For example, longitudinal studies
frequently result in data where not all subjects have observations on all variables at
later time points. This may be a result of the design, e.g. using adaptive testing where
test forms with different difficulty level are administered depending on performance at



Selection and predictive validity with latent variable structures 271

previous time points, or if may be due to self-selection and attrition. The FQL
estimator has general applicability to latent variable modelling with missing data.
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