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This chapter discusses new psychometric analyses that improve
capabilities for relating performance on achievement test items to
instruction received by the examinees. The modeling discussion will
be closely tied to the SIMS data for U.S. eighth-grade students.
Item Response Theory (IRT) is a standard psychometric approach
for analyzing a set of dichotomously scored test items. Standard IRT
modeling assumes that the items measure a unidimensional latent
trait, a hypothetical or unobserved characteristic (for example,
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mathematical ability). Latent trait models describe the relationship
‘between the observable test performance and the unobservable
traits or characteristics that are assumed to influence performance
on the test. This particular kind of latent trait model is used to
assess the measurement qualities of each item and to give each
examinee a latent trait score (the examinee's standing on the latent
trait). However, as will be shown, IRT modeling is limited in ways
that are a hindrance to properly relating achievement responses to
instructional experiences. Taking IRT as a starting point, this chap-
ter summarizes some work on a set of new analytic techniques that
give a richer description of achievement-instruction relations.

Six topics that expand standard IRT and specifically deal with
effects of varying instructional opportunities will be discussed:

1. Variation in latent trait measurement characteristics.
This relates to the classic IRT concern of “item bias,” here
translated as the advantage or dlsadvantage to OTL in
getting an item right.

2. Multidimensional modeling. Inclusion of narrowly de-
fined, specific factors closely related to instructional units
in the presence of a general, dominant trait.

3. Modeling with heterogeneity in levels. Analyses that take
into account that achievement data often are not sampled
from a single student population but one with hetero-
geneity of performance levels.

4. Estimation of trait scores. Deriving scores based on both
performance and background information for both general
and specific traits. ‘

5. Predicting achievement. Latent trait modeling that relates
the trait to student background variables.

6. Analyzing change. Relating change in general and specific
traits to opportunity to learn.

The SIMS data will be used throughout to illustrate the new meth-
ods. All analyses will be carried out within the modeling framework
of the LISCOMP computer program (Muthén, 1984, 1987).

The first part of this chapter describes the data to be analyzed.
The second part describes general features of the psychometric
problem. The third part presents a descriptive analysis of the
achievement—instruction relation for the SIMS data and sets the
stage for later modeling. The final sections of the chapter discuss
methods appropriate for Topics 1-6 listed above.
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‘THE SIMS DATA

We will concentrate our analysis on the U.S. eighth-graders (for
whom there are about 4,000 observations from both fall and spring)
sampled from about 200 randomly sampled classrooms varying in
size from about 5 to 35 students. For the part of the sample that we
will be concerned with, the core test was administered both dufing
the fall and the spring to all students in the study while the rotated
forms varied in their use pattern. We will be particularly concerned
with analyses of the 40 core items but will also report on analyses of
the four rotated forms. The rotated form analyses will be presented
as a cross-validation of findings for the core items. The SIMS data
provide a uniquely rich set of data with which to study instruc-
tionally sensitive psychometrics. '

It is well known that eighth-grade mathematics curricula vary
widely for students in the United States. Part of this information
opportunity to learn (OTL) for the topics covered by each test item.
As noted in previous chapters, for each item on the cognitive test,
teachers were asked two questions:

Question 1. During this school year did you teach or review the
mathematics needed to answer the item correctly?

1. No

2. Yes
- 3. No response
Question 2. If in the school year you did not teach or review the
mathematics needed to answer this item correctly, was it mainly
because? ‘

1. It had been taught prior to this school year

2. It will be taught later (this year or later)

3. It is not in the school curriculum at all

4. For other reasons

5. No response

Using these responses.' OTL level is defined as:

No OTL: Question 1 = 1; Question 2 = 2,3,4, or 5

Prior OTL: Question 1 = I or 3; Question 2 = 1

This Year OTL: Question 1 = 2; Quéstion 2 = 5 (other response
combinations had zero frequencies)

In most analyses to follow, Prior OTL and This Year OTL will be
combined into a single OTL category.
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For the U.S. eighth-grade mathematics students, information
was also collected in order to make a distinction between “tracks” or
class types, yielding a categorization into remedial, typical, en-
riched (or pre-algebra), and algebra classes. This classification was
based on the SIMS teacher questionnaire data. Other teacher-
related information was also collected, as well as student back-
ground information on family, career interests, and attitudes. Some
of this additional information will also be used in some of the
analyses to follow.

THE GENERAL PROBLEM .

In general psychometric modeling assumes mdependent and iden-
tically distributed observations (i.i.d.) from some relevant popula-
tion. This assumption is also made in IRT. Because of the varying
curricula and instructional histories of the students in a study like
SIMS, the assumption of identically distributed observations is not
realistic to describe either relationships between what is measured
(achievement responses) and what the measurements are attempt-
ing to capture (the traits) or how traits vary with relevant covariates
such as instructional exposure and student background. '

The distribution of responses for various values of the latent tralt
cannot be expected to be identical for a student who has had ‘no
‘specific instruction on the item topic and a student who has had
instruction. The trait distribution cannot be expected to be the
same for students in enriched classes as for students in typical
classes. The students are naturally sampled from heterogeneous
populations. Increased homogeneity can be obtained by dividing the
students into groups based on instructional experiences; however,
such groupings may have to be very detailed to achieve their purpose
and any simple grouping may be quite arbitrary.

A more satisfactory approach is to use modeling that allows for
heterogeneity, using parameters that vary for varying instructional
experiences. Such modeling also accomplishes the goal of instruc-
tionally sensitive psychometrics by explicitly describing achieve-
ment response-instructional experiences relations.

DESCRIPTIVE ANALYSES

It is informative to consider descriptively how achievement re-
sponses within SIMS vary with instructional exposure. This forms a
basis for our subsequent modeling efforts. We will first study this in
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terms of univariate achievement distributions using the posttest
core items. We will also study the change in univariate responses
from pretest to posttest. ‘

Univariate Response

Consider first the univariate responses for the posttest. The pro-
portion correct for these items is presented in Table 11.1, broken
down by the class-type categories remedial, typical, enriched, and
algebra and by the OTL categories No OTL, This Year OTL, and
Prior OTL. From the totals it is seen that both class type and OTL
have a strong effect on proportion correct. _ )

For most items the proportion correct is higher for enriched and
algebra classes than for remedial and typical classes. For almost all
items the proportion correct increases when moving from No OTL to
This Year OTL to Prior OTL. The reason why Prior OTL gives higher
proportion correct than This Year OTL is partly because Prior OTL is-
more common for enriched and algebra classes to which we presume
students of higher achievement levels have been selected.

OTL appears to also have an overall positive effect on proportion
correct when controlling for class type, at least for typical classes.
Also, when controlling for OTL, class type seems to still have a
strong effect. These univariate relationships are informative but
confound effects of instructional exposure with effects of student
achievement level. For example, the higher proportion correct for a
certain item for students with Prior OTL may be solely due to such
students having a higher achievement level on the whole test, It
would be of interest to know if students with the same achievement
level perform differently on a certain item for different instructional
exposure. '

To explore this possibility, we may consider the total score on the
posttest as the general mathematics achievement level of each stu-
dent. Then, for each general achievement level, we could study the
variation of proportion correct for each item as a function of instruc-
tional exposure. We have carried this out using the dichotomous
version of OTL, combining Prior OTL with This Year OTL into a
single OTL category. ,

For each value of the achievement variable we then have a propor-
tion correct for a No OTL and an OTL group and can study whether
OTL makes a difference. Conversely, for each of the two OTL catego-
ries we will present the distribution of the achievement variable in
order to study whether having OTL for an item implies that these
students have a higher general achievement level. These plots are
given in Figures 11.1-11.4 '
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TABLE 11.1

Percentage of Students and Percentage Correct for Selected Core Items

by OTL and Class Type

Total* No OTL This Year OTL Prior OTL
Item PR PO ST PR PO ST PR PO ST PR PO
MEO1T , -
TOT 35 43 21 22 26 59 36 47 20 44 48
REM 11 18 33 7 8 60 12 23 7 21 21
TYP 30 38 24 21 27 64 34 43 12 28 43
ENR 42 52 17 25 24 71 48 63 12 29 29
ALC 61 64 6 64 64 5 39 50 89 62 65
AR02 ' .
TOT 47 60 3 34 53 89 45 59 8 74 78
REM 12 21 9 17 33 91 11 20 0 0 o0
TYP 42 57 3 34 40 97 42 57 0 o0 0
ENR 58 74 4 46 86 90 57 73 6 74 81
ALG 74 75 0 o0 0 43 73 71 57 74 78
"ALO3
TOT 9 21 38 8 9 61 10 28 1 3 19
REM 15 9 . 78 15 8 22 13 13 0 0 0O
TYP 8 14 49 7 9 50 8 18 2 3 19
ENR 8 21 16 12 11 84 7 23 0 0 0
ALG 16 64 7 0 19 94 17 68 0 0 0
MEO6 :
TOT 49 55 28 48 54 59 48 55 13 52 59
REM 20 31 41 23 35 45 21 31 14 11 22
TYP 47 52 27 48 53 65 48 52 8 42 47
ENR 52 61 32 51 60 65 52 62 .2 82 68
ALG 66 73 10 83 80 28 68 75 62 63 72
MEO8 ' :
TOT 89 89 17 89 88 58 88 88 25 93 92
REM 67 61 34 62 55 58 69 64 8 76 67
TYP 89 89 17 94 93 66 88 89 18 89 88
ENR 93 93 16 90 91 59 93 93 26 96 94
ALG 98 97 14 96 100 12 9 98 74 99 97
ME09 :
TOT 42 52 14 41 48 56 38 50 30 S50 59
REM 16" 18 27 18 19 58 15 18 15 21 15
TYP - 37 48 14 4 49 62 36 47 23 38 49
ENR 48 64 11 42 53 63 46 65 27 56 65
ALG 67 73 12 76 78 2 56 33 85 66 73
AL16
TOT 23 58 6 9 16 92 24 60 2 37 88
REM 9 14 52 10 9 48 7 20 0 0 0
TYP 18 50 3 6 11 97 18 52 0 0 O
ENR 28 74 2 17 89 94 28 73 4 34 94
ALG 53 89 0 o0 0 94 53 89 6 41 77
GE17 :
0T 47 59 13 39 38 72 46 62 15 59 63
REM 24 24 41 22 15 48 25 26 10 29 46
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TABLE 11.1 (cont.) v
Percentage of Students and Percentage Correct for Selected Core Items
by OTL and Class Type

Total* No OTL This Year OTL Prior OTL
Item PR PO ST PR PO ST PR PO ST PR PO
TYP 42 56 11 42 37 82 43 60 8 35 40
ENR 53 68 12 44 44 80 55 72 8 53 68
ALG 76 80 10 61 85 18 78 93 72 78 77
GE19 o : -
T0T 23 33 76 23 32 23 22 38 1 52 57
REM 10 19 0 10 19 0 0 0 0 0 0
TYP 22 30 72 22 29 28 21 33 0O -0 0O
ENR 25 39 71 25 35 29 25 49 0 0 0
"ALG 39 49 89 38 48 0 0 0 11 52 57
GE21 - '
TOT 20 34 60 20 30 37 21 39 323 39
REM 16 16 97 16 17 3 25 13 0 0 0
TYP 18 30 60 17 29 39 20 33 1 22 11
ENR 20 39 46 20 34 52 20 44 ©2 6 33
ALG 34 50 65 33 45 18 44 71 17 28 49
GE22 '
T0T 37 59 13 26 26 80 37 64 7 62 67
REM 21 18 79 23 19 C7 9 11 4 30 40"
. TYP 33 55 8 28 26 90 33 58 2 29 37
ENR 40 71 6 20 15 92 40 75 2 59 59
ALG 70 81 9 47 82 4 70 85 47 73 78 .
AL25 ' .
TOT 42 46 7 28 34 92 42 47 2 70 59
REM 12 15 28 8 13 72 13 16 0 0 0
TYP 38 42 7 36 40 92 37 43 2 68 44
ENR 48 55 3 40 60 97 49 55 0 0 0
ALG 69 67 0 0 0 94 69 66 6 73 86
AR34
TOT 24 39 4 16 19 90 22 39 7 45 53
REM 10 15 19 14 16 81 9 14 0 0 "0
TYP 19 34 4 17 22 96 19 34 0 0 0
" ENR 29 54 0 0 0 97 29 54 3 39 35
ALG 44 53 0 0 0 43 43 50 57 45 55

*Percentages of students by class type. are:
REM = Remedial: 7.1 (N = 268), TYP = Typical: 57.6 (N = 2148)
ENR = Enriched: 24.4 (N = 909), ALG = Algebra: 10.7 (N = 399)

ST = Percentage students ME = Measurement
PR = Percentage correct for pretest AR = Arithmetic
PO = Percentage correct for posttest AL = Algebra

GE = Geometry

Figure 11.1 describes Items 1, 2, and 3. The left-most panel shows
the total score distribution given No OTL and OTL, respectively. We
note that the score distributions have different means with the OTL
distribution having a somewhat higher mean, supporting the no-
tion that students who receive OTL perform better as measured by
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FIGURE 11.4 Score Distributions for Core Items 25 and 34
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this test. We also note that the variances of the two distributions are
about the same. The score distributions shown are representative of
all core items. _ ' ‘

The right-most part of Figure 11.1 and Figures 11.2-11.4 contain
. curves showing the proportion correct for a given total score for the
- two OTL categories. For each item and both OTL categories, propor-
tion correct increases with total score indicating that for both OTL
categories the item is a good indicator of the general achievement
variable that the total score represents. It is particularly noteworthy
that this is true also for the No OTL category and that the No OTL
and OTL curves most often are very close. The students who, accord-
ing to their teachers, have not been taught the mathematics needed
to answer the item correctly still appear to have a high probability of
answering the item correctly and this probability increases with
increasing total score. This may indicate that students can, to a
large degree, draw on related knowledge to solve the item. It may also
indicate unreliability in the teachers’ OTL responses. However, the -
differences in score distributions for the core items show that the
OTL measures have consistent and strong relations to the total
score. Instead of unreliability there may be a component of invalidity
involved in the teachers’ responses, where OTL may to some extent
be confounded with average achievement level in the class and/or
the item's difficulty.

The score distributions show that OTL is correlated with perfor-
mance. Our hypothesis is that OTL helps to induce an increased
level of general achievement and that, in general, it is this increased
level that increases the probability of a correct answer, not OTL
directly. In this way, moving from the No OTL status to the OTL
status implies a move upwards to the right along the common curve
for No OTL and OTL.

There are some exceptions to the general finding of common
curves for the No OTL and OTL categories. For example, Items 3 and
17 show a large positive effect of having OTL. Several other items
with sizeable numbers of students in the two OTL categories also
show positive effects. This means that for these items, the added
advantage of having OTL is not fully explained by a corresponding
increase in total score. OTL directly affects success in answering the
item correctly. From Table 11.1 we find that for the three items
listed, the proportion correct increases strongly when moving from
the No OTL category to the OTL categories.

However, Table 11.1 cannot be counted on for finding items with
direct OTL effects of this kind since several other items also show
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strong increases in proportion correct due to OTL. For example, in
Table 11.1, Item 25 shows substantial increases in proportion cor-
rect moving from the No OTL to the OTL categories, but the curves
shown in Figure 11.4 are essentially the same. We will return to the
interpretation of this type of effect in Section 4. Note also that with
the exception of Item 3 any OTL effect appears to be such that the
two curves are approximately parallel, implying that the OTL effect
is constant across achievement levels. For Item 3 the OTL advantage
increases with increasing achievement level, perhaps because it is a
difficult item.

Change of Univariate Responses

The SIMS core items also provide the opportunity to study
changes in proportion correct-for each item from the fall to the
spring testing. This change can be related to OTL. For each item we
may distinguish between three groups of students: those who did
not have OTL before the pretest or before the posttest (the No OTL
group); those who had OTL before the pretest (Prior OTL); and those
who did not have OTL before the pretest but did have OTL before the
posttest (This Year OTL). '

The change for the No OTL group gives an indication of change
due to learning on related topics. The change for the Prior OTL
group gives an indication of effects related to practice, review, and,
perhaps, forgetting. The change for the group having This Year OTL
reflects the direct exposure to.the topic represented by the item.
These changes can also be studied in Table 11.1. Table 11.1 shows
that where changes occur, they are largely positive for each OTL
category, with the largest changes occurring for students in the
category of This Year OTL as expected. They may be taken to support
the dependability of the teacher-reported OTL measure.

VARIATIONS IN LATENT TRAIT
MEASUREMENT CHARACTERISTICS

The study of the univariate achievement responses above showed
that the set of core test items served as good indicators of the total
test score. We may hypothesize that this test score is a proxy for a
general mathematics achievement variable as measured by the com-
bined content of the set of core itemns. However, the total test score is
a fallible measure and what we are interested in are the relation-
ships between the items and the true score and estimates of the true
scores. This is a situation for which Item Response Theory (IRT) has
been proposed as being appropriate (see, for example, Lord, 1980).
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' The curves of Figures 11.1 to 11.4 are, in IRT language, empirical
item characteristic curves, which as theoretical counterparts have
conditional probability curves describing the probability correct on
an item given a latent trait score. We will now describe the IRT model
and how it can be extended to take into account instructional het-
erogeneity in its measurement characteristic.'

In this part of the chapter we investigate descriptively whether
the proportion correct for a given total test score varied across OTL
groups. In IRT language this is referred to as investigating item bias
or, using a more neutral term, differential item functioning. Stan-
dard IRT assumes that the item functions in the same way for
different groups of individuals. Concerns about item bias due to
instructional heterogeneity have recently been raised in the educa-
tional measurement literature. (See Chapter 8.) A variety of bias
detection schemes related to IRT have been discussed in the litera-
ture. Conflicting results have been found in empirical studies. For
example, Mehrens and Phillips (1986, 1987) found little differences
in the measurement characteristics of standardized tests due to
varying curricula in schools; however, Miller and Linn (1988), using
the SIMS data, found large differences related to opportunity to
learn, although these differences were not always interpretable.

' In formulas the IRT model may be briefly described as follows: Let y* be a p
vector of continuous latent response variables that correspond to specific skills
needed to solve each item correctly. Foritem j,

y = 0. ifys =1 ' (1)

1, otherwise

where 0 denotes the incorrect answer, 1 denotes the correct answer, and 7 is a
threshold parameter for item j corresponding to its difficulty. Assume also that
the latent response variable y*; is a function of a single continuous latent trait
7 and a residual g,

y* = A\m + ¢ (2)

where )\, is a slope parameter for Item j, interpretable as a factor loading. With
proper assumptions on the right-hand-side variables, this gives rise to the two-
parameter normal ogive IRT model. For each item there are two parameters, 7
and ;. The conditional probability of a correct response on Item j is

P{yj = 1|Tl) = ¢ [("Tj + )‘ﬂ\) b -2 : (3)
where ¢ is the variance of ¢. This means that the threshold 7; determines the

item’s difficulty, that is the horizontal location of the probability curve. and the
loading ) determines the slope of the probability curve.
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Muthén (1989b) pointed out methodological problems in assess-
ing differential item functioning when many items may be biased.
He suggested a new approach based on a model which extends the
standard IRT. The analysis is carried out by the LISCOMP program
(Muthén 1987). This approach is particularly suitable to the SIMS
data situation with its item specific OTL information.?

The model disentangles the effects of OTL in an interesting way. It
states that OTL has a direct effect on the general achievement trait.
Here we are interested in finding positive effects of instruction.
Through the expected increase in the general achievement trait,
such effects also have an indirect positive effect on the probability of
a correct item response.

In addition to the indirect effect of OTL for an item, there is also
the possibility of a direct OTL effect on an item. Any direct effect
indicates that the specific skill needed to solve the item draws not
only on the general achievement trait but also on OTL. The size of
the OTL effect on the general achievement trait indicates the extent
to which the trait is sensitive to instruction. The size of the OTL

’Let x be a vector of p OTL variables, one for each achievement item. The x
variables may be continuous, but assume for simplicity that x, is dichotomous
with x; = 0 for No OTL and x; = 1 for OTL. Consider the modification of
Equation (2)

y* = A + Bx + ¢ (4)

where in general we restrict B to be a diagonal p X p matrix. The diagonal
element for Item j is denoted B, The OTL variables are also seen as influencing
the trait 7,

m=vXx+{ (5)

where v is a p-vector of regression parameter slopes and { is a residual. It follows
that

Ply, = IITI- x) = @ (-7 + Bx + AmVIy*in)-'2 (6)

In effect, then, the B, coefficient indicates the added or reduced difficulty in
the item due to OTL. Equivalently, using equation (4), we may see this effect as
increasing y*;, the specific skill needed to solve Item j.

We note that this model allows for differential item functioning in terms of
difficulty but not in terms of the slope related parameter \;. This is in line with
the data analysis findings of Section 3.1 where little difference in slopes of the
conditional proportion correct curves was found across OTL groups (Item 3 was
an exception; we assume that this item will be reasonably well fitted by a varying
difficulty model). More general modeling is in principle possible, but the data
features do not seem to warrant such an extra effort.
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effect on the probability of a correct response indicates the-amount
of exposure sensitivity, or instructional oversensitivity, in the item.

While positive effects on the general achievement trait correspond
to a positive educational outcome, possible direct effects on items
are of less educational interest in that they demonstrate effects of
teaching that influence very narrow content domains. From a test
construction point of view, items that show such exposure sensi-
tivity are less suitable for inclusion in standardized tests since they
are prone to “item bias” in groups of examinees with varying in-
structional history. If such item bias goes undetected, IRT analysis
is distorted. However, in the modeling presented here exposure
sensitivity is allowed for and the analysis does not suffer from the
presence of such effects.

Muthén, Kao, and Burstein (1991) present examples of analysis of
exposure sensitivity using the dichotomous OTL groupings. How-
ever, we will first consider an example where the OTL categories No
OTL, This Year OTL, and Prior OTL were used. Figure 11.5 shows
the estimated item characteristic curves for Item 17, which has to do
with acute angles. Since there are three OTL categories, there are
three curves corresponding to three difficulty values. Since the
curves for both This Year OTL and Prior OTL are above the No OTL
curve, the direct effects of OTL on the probability of a correct re-
sponse are positive for these two OTL groups. Exposure to the
concept of acute angles produces a specific skill, which has the same
effect as a reduced item difficulty, and this skill is not included in
the general achievement trait.

It is interesting to relate this finding to the percentage correct on
Item 17 broken down by OTL group as given in Table 11.1. Percent-
age correct increases dramatically from the No OTL category to the
OTL categories, but the percentage correct is slightly higher for
- Prior OTL than for This Year OTL. For Item 17 the Prior OTL stu-
dents may do better than This Year OTL students, but Figure 11.5
shows that the recency of OTL gives an advantage for students at the
same achievement trait level. Comparing the estimated item charac-
teristic curves of Figure 11.5 with the empirical curves of Figure 11.3
we find a large degree of similarity but also differences. The esti-
mated curves represent more correct and precise estimates of these
curves. :

Muthén et al. (1991) found substantial exposure sensitivity in
Items 3 (solving for x), 16 (product of negative integers), and 17
(acute angles), 38 (percentages), and 39 (coordinate system). While
Items 3, 17, and 39 provided rather poor measurements of the
achievement trait as indicated by their estimated factor loadings,
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that was not the case for the other two. We hypothesized that the
exposure sensitivity corresponded to early learning of a definitional
nature. : -

Further analyses of the rotated form items, carried out by Kao
(1990), supported this hypothesis. For example, the rotated forms
showed exposure sensitivity for items covering square root prob-
lems. Overall, about 15 to 30 percent of the items exhibit mild
exposure sensitivity, while only about 10 to 15 percent exhibit
strong exposure sensitivity. We may note that these percentages are
considerably lower than Miller and Linn’s (1988) findings using
related parts of the SIMS data and standard IRT methodology. The
effects of OTL on the achievement trait will be discussed in later
sections.

MULTIDIMENSIONAL MODELING |

Standard IRT modeling assumes a unidimensional trait. For a care-
fully selected set of test items, this is often a good approximation.
However, in many achievement applications, it is reasonable to .
assume that sets of items draw on more than one achievement trait.

Although of great substantive interest, models with many minor
factors are very hard to identify by the means of analysis that are
commonly used. For instance, assume, as we will for the SIMS data,
that a general achievement factor is the dominant factor in that it .
influences the responses to all items. Assume further that, in addi- .
tion to this general factor, there are several specific factors, uncorre-
lated with the general factor, that influence small sets of items with
a common, narrow content. It is well known that such models with
continuous data cannot be easily recovered by ordinary exploratory
factor analysis techniques involving rotations.? This problem carries
over directly to dimensionality analysis of dichotomous items using
tetrachoric correlations.

3Muthén (1978) presented a method for the factor analysis of dichotomous '
items, where the model is

y* = Aq + ¢ (7)
V(y*) = AYA" + © (8)

1}

where A is a p x m factor loading matrix. V¥ is a factor covariance matrix, and ©
is a diagonal matrix of residual variances. In line with item analysis tradition
(see Lord and Novick, 1968), Muthén fitted the model to a matrix of sample
tetrachorics. For an overview of factor analysis with dichotomous items, see
Mislevy (1986). :
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Consider as an illustration of the problem an artificial model for
40 dichotomous items. Assume that one general factor influences all
items and eight specific factors each influence a set of five items. Let
the general factor loadings be 0.5 and 0.6 while the specific factor
loadings are 0.3 and 0.4. Let the factors be standardized to unit
variances and let the factors be uncorrelated. The eigenvalues of the
corresponding artificial correlation matrix are shown in Figure 11.6.

Such a “scree plot” is used for determining the number of factors
in an item set. The number of factors is taken to correspond to the
first break point in the plot where the eigenvalues level off. If the first
eigenvalue is considerably larger than the others and the others are
approximately equal, this is usually taken as a strong indication of
unidimensionality. Figure 11.6 clearly indicates unidimensionality
despite the existence of the eight specific factors. There would be no
reason to consider solutions of higher dimensionality. As a com-
parison, Figure 11.7 shows the eigenvalues for the tetrachoric cor-
relation matrix for the 39 core items of the SIMS data. The two
eigenvalue plots are rather similar.

Models similar to the artificial one considered above have been
studied by Schmid and Leiman (1957). They pointed out that the
situation with one general factor and k specific factors uncorrelated -
with the general factor could also be represented as a k-factor model
with correlated factors. Hence, they used the term hlerarchlcal

factor analysis.

The usefulness of hierarchical factor analysis has recently been
pointed out by Gustafsson (1988a, 1988b). He sought to circumvent
the difficulties of exploratory factor analysis by formulating confir-
matory factor analysis models. Hypothesizing a certain specific fac-
tor structure in addition to a general factor, the confirmatory model
enables the estimation of factors with very narrow content. (Applica-
tions of this type of modeling to the SIMS data are being considered
by the author in collaboration with Burstein, Gustafsson, Webb,
Kim, Novak, and Short.)

In line with our previous modeling, we may consider a simplified
version of the confirmatory model.* In this simplified version of the

‘We may write a simple version of this model as
Yy = Agme + As s, t g (9)

where y* is the latent response variable for Item j (cf. the Section 3 model), 7 is
the general achievement factor, ng, is the specific factor for Item j, and ¢ is a
residual. The three right-hand side variables are taken to be uncorrelated. This
means that the items belonging to a certain specific factor correlate not only due
to the general factor but also due to this specific factor.
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FIGURE 11.6 Scree Plot for Tetrachoric Correlations with Artificial Model for 40 Items

model, it is assumed that each item measures only one specific
factor. For identification purposes we assume that each specific
factor is measured by at least two items. The general factor is as-
sumed to influence each item to a different degree, while the specific
factor has the same influence on all items in the corresponding set.

The multidimensional confirmatory factor analysis model allows
an interesting variance component model interpretation. The model
implies a decomposition of the latent response variable variances
into a general factor component, a specific factor component, and
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an error component.® The relative sizes of the general and the spe-
cific components are of particular interest. The specific component
can also be interpreted as the average correlation remaining be-
tween items belonging to specific factor k when holding the general
factor constant. The model can be estimated by confirmatory factor

The variance component model is estimated by standardizing the general
factor variance to unity, while letting the specific factor variances be free
parameters. The decomposition is:

VYY) = NP+ s, + 8 (10)

where g, is the variance of the specific factor k. Since the items are
dichotomous, the variances of the y*'s are standardized to one by restrictions on

the 0;'s.
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analysis techniques for dichotomous items using the LISCOMP
computer program (see Muthén, 1978, 1987).

The SIMS items of the core and the rotated forms were classified
into subsets corresponding to specific factors defined both by con-
‘tent and procedure. Examples of the narrow item domains that were
considered are: arithmetic with signed numbers (Core Items 3, 16,
25), percent calculations (Core Items 2, 34, 36, 38), estimation skills
(size, distance; Core Items 6, 8, 9), and angular measurements (Core
Items 17, 19, 21, 22).

The analysis steps are as follows: For a given hypothesized set of
specific factors, a confirmatory factor analysis can be performed.
.The initial model may then be refined in several steps. An inap-
propriate combination of items for a specific factor gives rise to a low
or negative variance component estimate for this specific factor.
Modifications may be assisted by inspection of model misfit indices. -

For this model a useful index is related to the loadings of the
- specific factors that are fixed to unity in the baseline model. The
sign and size of the derivatives of these loadings are of interest. A
positive value for a certain item indicates that if the loading is free to
be estimated, the estimated value will be smaller than one. In effect,
this allows the estimate of the variance component for the specific
factor-at hand to increase. This is because the specific variance
component is related to the average correlation of the specific factor
items, conditional on the general factor, where the decrease in the
factor loading for a certain item means that the contribution from
this item is weighted down. Thus, modifying the initial analysis,
items that obtain very low or negative specific factor loadings are
candidates for exclusion from the set assigned to this specific factor.
This modification process may be performed in several iterations. In
the analyses performed for the SIMS data, this procedure appeared
to produce substantively meaningful results in that the items that
were signaled out clearly had features that distinguished them from
the others in the set.

Table 11.2 gives the estimated variance components for core
items corresponding to three of the specific factors. It is seen that
the variance contribution from the specific factors can be as large as
50 percent of that of the general factor and are therefore of great
practical significance. This is particularly so since the sets of items
for a specific factor correspond closely to instructional units. An-
alyses of the rotated forms replicated most of the specific factors
found for the core.

- The confirmatory factor analysis procedure described is a cum-
bersome one, involving many iterations and many subjective deci-
sions. An attempt was therefore made to find an approach that
would involve fewer steps and a more objective analysis. It was
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_ TABLE 11.2
Variance Components for Selected Items from the SIMS Population A
Test Core*

'Spec\ific Factors

General - Angular
Item ) Factor Percent Estimate Measurement
AR02 33 (24) ° 9 (9)
AR24 39 (32) 9 (9)
AR36 32 (27) 9 (9)
AR38 _ 35 (26) 9 (9)
MEQ6 20 (14) _ ) 9 (10)
MEQ8 38 (27) 9 (10)
MEQ9 38 (29) ) 9 (10)
GE17 ' 28 (17) 11(12)
GE19 - 17 (12) ' v 11 (12)
GE21 24 (17) 11 (12)
GE22 43 (30) 11(12)

*The estimate when controlling for mean level heterogeneity is given in parentheses (See
Section 5).

reasoned that if the influence of the general factor could be removed
from the item correlations, the remaining correlations would be due
to the specific factors alone. Such residual correlations could then
“be factor analyzed by regular exploratory techniques, at least if
nesting of specific factors within each other was ignored. Given a
proxy for the general factor, the residual correlations could be ob-
tained by bivariate probit regressions of all pairs of items on the
proxy using the LISCOMP program.

An attempt was first made to approximate the general factor for
the posttest core items with the posttest total score. However, this
produced almost zero residual correlations. Instead, the pretest total
score was used for the posttest items. An exploratory factor analysis
of these residual correlations, using an orthogonal rotation by Var-
imax, resulted in 11 factors with eigenvalues greater than one.

The interpretation of these factors showed an extraordinary high
degree of agreement with the specific factors previously obtained.
The best agreement was obtained for factors that had obtained the
largest variance component estimates. The exploratory analysis also
suggested a few items to be added to the specific factors as defined
earlier. The agreement of these two very different approaches is
remarkable and it is interesting that the pretest score appears to be
a better proxy for the general factor at the posttest occasion than the
posttest score. This may indicate that the general facter is a rela-
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tively stable trait related to the achievement level before eighth grade
instruction (we note from Table 11.1 that This Year OTL is the most
+ prevalent category). In contrast, controlling for posttest score may
control for a combination of the general factor and specific factors.

1t is interesting to note that analyses of the core items adminis-
tered at the pretest gave very similar results in terms of specific
factors identified by the confirmatory approach. This indicates sta-
bility of the specific factors over the eighth grade. Attempting to
compute residual correlations for exploratory factor analysis again
gave near zero values when controlling for the total score, the pretest
in this case, and this approach had to be abandoned.

MODELING WITH HETEROGENEITY IN LEVELS

The factor analysis described in the previous section was performed
under the regular assumption of identically distributed observa-
tions. That is, all students are assumed to be sampled from the same
population with one set of parameters. However, we have already
noted that the students have widely varying instructional histories
and that the homogeneity of student populations is not a realistic
assumption. This is a common problem in analysis of educational
data and has been given little attention. We may ask how this
heterogeneity affects our analysis and if it can be taken into account
in our modeling.

Muthén (1989a) considers covariance structure modeling in pop-
ulations with heterogeneous mean levels. He considers the effect of
incorrectly ignoring the heterogeneity, and proposes a method to
build the heterogeneity into the model. The method is directly appli-
- cable to the multidimensional factor analysis model considered in
‘the previous section and can also be carried out within the LIS-
COMP framework.® This modeling has two important outcomes. The

®Consider the model of Equation (7)

y* = An + € (11)
In the previous section we made the usual standardization of E(n,) = O for all
observations i and assumed V{(n,) = W. However, we know that it is unrealistic to

assume that, for example, students from different class types have the same
factor means levels. We may instead want to assume that the means vary with
class type such that for Student i in Class ¢ we have E(n,) = a.. As pointed out
in Muthén (1989a) this may be accomplished by considering in addition to (11)
the equation
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dimensionality analysis can be carried out without distortion due to
the differences in factor mean levels across class types, and the
factor mean levels can be estimated.

A mean-adjusted analysis was carried out on the SIMS core items
using the multidimensional factor model from Table 11.2. Factor
mean differences were allowed for class type using three dummy
variables and also gender. We will concentrate our discussion of the
results on the factor structure.

Despite large mean differences across class type for the general
achievement factor, a factor structure very similar to the previous
one emerged. The same specific factors showed large and small
variances, respectively. Hence, the potential for a distorted structure
is not realized in these data. The results are presented in parenthe-
ses in Table 11.2. It is seen that the variance contributions to the
general factor are considerably reduced as compared to the first
approach.

n, = Ix. + L (12)

where x, represents a vector of class type dummy variable values for Class ¢, T is
a parameter matrix, and {, is a residual vector for Student i in Class c. We

" assume that conditional on class-type membership the factor means vary while
the factor covariance matrix remains constant, '

E(nJx) = Tx, ‘ (13)
Vinglx) = ¥ . (14)

The modeling also assumes that the matrices A and © are constant across
class types. so that

E(y*|x.) = Alx, : © (19)
Viy*lx) = AYA' + © (16)

It is interesting to note that the assumption of constancy of the conditional
covariance matrix V(y*/x.) is in line with the findings of constancy of .the
homogeneity of correlations. -

The structure imposed on the parameter matrices of (15) and (16) may
correspond to an exploratory or a confirmatory factor analysis model. Muthén
(1989a) points out that the conditional covariance matrix of (16) is not in general
the same as the marginal covariance matrix V(y*). [n our context this means that
even when we have the same factor analysis structure in the different class types
this covariance structure does not hold in the total group of students. The
approach outlined here essentially provides a mean-adjusted analysis of pooled
covariance matrices assumed to be equal in the population. In our situation the
analysis effectively is carried out on pooled tetrachoric correlation matrices.
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The reduction in variance contribution from the general factor is
natural, since holding class type constant reduces the individual
difference in the general achievement trait due to selection of stu-
dents. If the inference is to the mix of students encountered in the
SIMS data, the unreduced variation in the trait is the correct one;
but this variation is not representative for a student from any given
class type. It is also interesting to note that the specific factor
variances are not similarly reduced by holding class type constant,
presumably indicating that these specific skills are largely unrelated
to the student differences represented by class type.

ESTIMATION OF TRAIT SCORES

So far in this chapter, we have considered various factor analysis
models for the achievement responses. Assuming known or well-
estimated parameter values for these models, it is of interest to
estimate each student’s score on the factors of these models. For the
standard, unidimensional IRT model, estimation of the trait values
is a standard task which may be carried out by maximum likelihood,
Bayes' model (maximum a posteriori), or expected a posterlon esti-
mators (see for example, Bock & Mislevy, 1986).

However, the instructionally sensitive models we have considered
~ for the SIMS data have brought us outside this standard situation
in the following three respects: v

1. In line with Section 4, we want to consider factor score -
estimation that takes into account that certain items have
different difficulty levels depending on the students’ OTL
level.

2. Inline with Section 5, we want to consider factor scores for:
both the general achievement factor and the specific fac-
tors in the multidimensional model.

3. In line with Section 6, we want to consider factor. scores
estimation that takes into account differences in student
achievement level.

We note that (1) and (3) are quite controversial since these points
raise the issue of estimating achievement scores based not only on
the student’s test responses but also on his or her instructional
background. Bock (1972) has argued that prior information on
groups should not be used in comparisons of individuals across
groups. Nevertheless, it would seem that students who have had
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very limited OTL on a set of test items will be unfairly disadvantaged
in comparison with students with substantial exposure. The aim
may instead be to obtain achievement scores for given instructional
experiences.

Point (2) is of considerable interest. While a rough proxy for the
general achievement score is easily obtainable as the total test score,
adding of items corresponding to specific factors would involve only
a few items resulting in a very unreliable score. As a contrast,
estimating the specific factor scores draws on the correlated re-
sponses from all other items.

Muthén and Short (1988)’ considered an example of the situation
of (1) and (3). They generated a random sample of 1,000 observa-
tions from a model with 40 items measuring a unidimensional trait.
Observations were also generated from 40 OTL variables and five
other background variables. All background variables were assumed
to influence the trait while the first 20 OTL variables had direct
effects on their corresponding items, giving rise to exposure sensi-
tivity in these items.

Among other results, Muthén and Short considered differences in
factor score estimates using the above method and the traditional
IRT method. In Table 11.3 comparisons of the two corresponding
score distributions are presented by quartiles, broken down in two
parts—students with a high total sum of OTL and students with a
low sum. The table demonstrates that for students of the low OTL
group, estimated scores are on the whole higher with the new meth-
od, corresponding to an adjustment for having had less exposure,
while for the high OTL group the estimated scores are on the whole
lower for the new method. '

Other work by Muthén and Short has investigated Situation (2)
and the precision with which scores for specific factors can be
estimated. Once the estimated factor scores have been calculated

"The following estimation procedure was discussed in Muthén and Short
(1988) and handles all three cases above. For various density and probability
functions g, consider the posteriori distribution of the factors of 7,

glnly.x) = d(nlx)glyln.x)lglylx) an’

Here, the first term on the right-hand side represents a normal prior
distribution for m conditional on x, where as before x represents instructional
background variables such as OTL and class type. In line with Section 5, the
factor covariance matrix may be taken as constant givenx, while the factor means
may vary with x. The second term on the right-hand side represents the product

“of the item characteristic curves, which may vary in difficulty across OTL levels
as discussed in Section 3.



Trait Estimates by Traditional and New Approaches*

TABLE 11.3

Low OTL Group

Traditional
NEW 25% 50% 75% 100% Total
136 : 6 0 0 142 .
25% -1.323 -0.610 -1.293
-1.255 —-0.724 -1.233
10 125 5 0 140
50% -0.783 -0.361 0.037 -0.375
-0.624 -0.338 -0.119 -0.351
0 13 111 7 131
75% -0.094 0.309 0.827 0.297
0.058 0.316 0.691 0.311
0 0 6 124 130
100% 0.691 1.282 1.255
0.834 1.308 1.286
Total 146 144 122 131 543
-1.286 —-0.347 0.317 1.257
-1.212 -0.318 0.324 1.275
High OTL Group
, Traditional
NEW 25% 50% 75% 100% Total
99 9 0 0 108
25% -1.306 -0.578 —-1.245
~1.349 -0.743 ‘ -1.298
5 94 12 0 111
50% -0.726 -0.340 0.049 -0.315
—-0.581 -0.366 -0.119 -0.349
0 3 110 5 118
75% -0.167 0.345 0.870 0.355
0.022 0.322 0.640 0.327
0 0 6 114 120
100% g 0.653 1.386 1.349
0.782 1.334 1.306
Total 104 106 128 119 457
-1.278 -0.355 0.332 1.364
-1.312 -0.389 0.302 1.305

*Entries are: Frequency

Mean value by the traditional approach

Mean value by the new approach
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they may conveniently be related to various instructional variables
and may also be studied for change from pretest to posttest.

PREDICTING ACHIEVEMENT

Given the explorations outlined in the previous sections, we may
attempt to formulate a more comprehensive model for the data.
Muthén (1988) proposed the use of structural equation modeling for -
this task. He discussed a model that extends ordinary structural
modeling to-dichotomous response variables, while at the same time
extending ordinary IRT to include predictors of the trait. He studied
part of the SIMS data using a model that attempted to predict a
unidimensional algebra trait at the posttest using a set of instruc-
tional and student background variables from the pretest.

The set of predictors used and their standardized effects are given
in Table 11.4. While pretest scores have strong expected effects,

" TABLE 114 |
Structural Parameters with the Latent Construct
as Dependent Variable

Regressor - .Estimate - Estimate/S.E.
PREALG : ... 0.8 1
PREMEAS TenUN 045 ! 7.
PREGEOM S .7 033 5
PREARITH 2.09 16
FAED 0.07 1
MOED 0.02 0
MORED 0.18 . 3
USEFUL o 0.45 7
ATTRACT ~ . 0.04 1
NONWHITE * -0.02 0
REMEDIAL 0.07 - 1
ENRICHED 0.22 3
ALGEBRA 0.56 4
FEMALE 0.14 6
LOWOCC 0.02 1
HIGHOCC 0.12 3
MISSOCC 0.05 2
NONW x REM 0.10 1
NONW x ENR 0.19 3
NONW x ALG -0.18 -1
PREARITH x REM -1.45 -3
PREARITH x ENR -0.10 -1
PREARITH x ALG -0.54 -2

NONW x PREARITH -0.19 -1
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class type, being female, father being in a high occupational catego-
ry. and finding mathematics useful to future needs also had strong
effects. The OTL variables had very small effects overall, perhaps due
to the fact that each item’s OTL variable has rather little power in
predicting this general trait. Given the results of the previous sec-
tions, this modeling approach can be extended to include a multi-
dimensional model for the set of both pretest and posttest items,

predicting posttest factors from pretest factors, using instructional =

and student background variables as covariates, and allowing for
differential item functioning in terms of exposure sensitivity.

ANALYZING CHANGE

The structural modeling discussed in the previous section is also
~ suitable for modeling of change from pretest to posttest. Earlier in
the chapter we pointed out that in terms of change, the SIMS data
again exemplified complex population heterogeneity. For each item,
a student may belong to one of three OTL groups, corresponding to
the two types of no new learning and learning during the year. To
again reach the goal of instructionally sensitive psychometrics for
this new situation, we should explicitly model this heterogeneity.
However, to properly model such complex heterogeneity is a very
challenging task.

A basic assumption is that change is different for groups of
students of different class types and OTL patterns. In a structural
model where posttest factors are regressed on pretest factors, the
slopes may be viewed as varying across such student groups, where
student groups for whom a large degree of learning during the year
(as measured by the set of OTL variables) has taken place, are
assumed to have steeper slopes than the other students. Such an
approach is rare in the field of psychometrics.
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