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1. INTRODUCTION

In developmental research it is natural to place an emphasis on the study of
individual differences in change, growth, and decline over time. It is useful to
formulate a longitudinal model for these processes to assess the amount of in-
dividual variation and to relate the individual variation to background informa-
tion on the individuals. Random coefficient growth modeling (see, e.g., Laird &
Ware, 1982; Rutter & Elashoft, 1994) is suitable for such longitudinal analysis.
It goes beyond conventional structural equation modeling of longitudinal data
with its focus on autoregressive models (see, e.g., Joreskog & Soérbom, 1977;
Wheaton, Muthén, Alwin, & Summers, 1977) in that it describes individual dif-
ferences in the longitudinal processes. It is instructive to consider first some ex-
amples of longitudinal studies with binary responses in which random coeffi-
cient modeling has been used.

1.1. Example 1: Decline in Depression
Gibbons and Bock (1987) reported on the longitudinal analyses of data on Dan-
ish psychiatric patients. A total of 100 clinically depressed patients were given
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one of two drugs and were observed five times weekly. The response variable
was recorded as recovered (scored 0) or still depressed (scored 1). Information
was collected on time-invariant covariates such as severity of illness and age.
Time-varying covariates included the plasma level of the drug. The patients were
divided into two groups. One group received the drug imipramine and the other
received chlorimipramine. The object of the study was to find out which of the
two drugs resulted in the sharpest decline in the probability that the patient still
felt depressed.

1.2. Example 2: Change/Stability of Neuroticism

Muthén (1983) studied the data described in Henderson, Byrne, and Duncan-
Jones (1981) for 231 Canberra adults interviewed four times at 4-month inter-
vals regarding aspects of “neurotic illness.” In a short form of a general health
questionnaire, the four questions asked were “In the last month have you suf-
tered from any of the following? Anxiety. Depression. Irritability. Nervousness.”
A yes response was denoted | and no was denoted 0. Time-invariant covariates
included gender and a measure of long-term susceptibility to neurosis (the N
scale from the Eysenck Personality Inventory). Time-varying covariates included
life events in the four months prior to the interview. The object of the study was
to assess the stability over time of the level of neuroticism of this population of
individuals.

1.3. Example 3: Correlated Observations on Asthma Attacks

Stiratelli, Laird, and Ware (1984) studied data on daily observations of 64 asth-
matics living in Garden Grove, California. The response variable was the pres-
ence or the absence of an asthma attack recorded over a period of about 7 months.
Time-invariant covariates included gender, age, and history of hay fever. Time-
varying covariates included air pollution and weather conditions. The object of
the study was to assess the relative importance of various risk factors for in-
creased probability of asthma attacks.

1.4. Contrasting the Examples

It is interesting to contrast these three examples. Example 3 illustrates the fact
that often the longitudinal structure of the data is only a nuisance. Here, the
interest is the same as in regression analysis. However, observations over time
for the same individual are correlated so that the usual assumption of indepen-
dent observations does not hold. The focus is on how to do the regression analy-
sis while properly taking into account the nonindependence. In Example 2, the
longitudinal structure of the data is not a nuisance but is essential to the analy-
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sis. The longitudinal process is one in which no particular trend over time is
expected; the interest is in assessing how much responses vary over time for a
typical individual. Observations fluctuate up and down over time for each indi-
vidual and it is the amount of fluctuation that is the focus of the study. Example
1 involves a further elaboration of the longitudinal study. Here, observations do
not only fluctuate over time for a given individual but also follow a decreasing
trend over time. This chapter focuses on situations illustrated by Examples |
and 2.

The aim of this chapter is to discuss conventional random effects modeling
for binary longitudinal response and to compare that with a generalized random
effects model for longitudinal data which draws on techniques used in latent
variable modeling. In section 2, the conventional modeling and estimation is
presented. Section 3 critiques this approach and gives a more general formula-
tion. Section 4 presents a small Monte Carlo study in which the more general
approach is studied and analyses of real data is also presented.

2. CONVENTIONAL MODELING AND ESTIMATION WITH BINARY
LONGITUDINAL DATA

Consider a binary variable y and a corresponding continuous latent response vari-
able y* for which 7 is a threshold parameter determining the y outcomes: y = |
when y* > 1 and y = 0 otherwise. Here, the progress over time of the latent
response variable y* is described as
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where ¢ denotes an individual, ¢, denotes a time-related variable with 1, = k (e.g.,
k=0,1,2,...,K—1), o is a random intercept at r = 0, B, is a random
slope, <y, are fixed slopes, v, is a time-varying covariate, and {;, is a residual, {
~ 10, U,). Furthermore,
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where ., pg, 7,, and g are parameters, w; is a time-invariant covariate, and
9, B are residuals assumed to have a bivariate normal distribution,
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With 1, = k and a linear function of time, for example, k =0,1,2,. . . , K — I,
the variables a and 3 can be interpreted as the initial status level and the rate of
growth/decline, respectively.
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The residuals of {;, are commonly assumed to be uncorrelated across time.
In line with Gibbons and Bock (1987), however, a first-order autoregressive
structure over time for these residuals is presented. Letting x = (w, v)', the model
implies multivariate normality for y* conditional on x with
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and W is the 2 X 2 covariance matrix in Eq. (3). .
For given t,, w, and v, the model expresses the probability of a certain ob-
served response y; as a function of the random coefficients o and B,
P(yu = 1oy, B x) = POy > 7ley, Bia %)
= r @(slz, Yg)ds
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where ¢ is a (univariate) normal density, {5, denotes the standard deviation of I,
and

z=o; + Bt T Vi @)

To identify the model, the standardization 7 = 0, {, = 1 can be used as in con-
ventional probit regression (see, €.g., Gibbons & Bock, 1987).
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The probability of a certain response may be expressed as

P(yp,. - - »yk-110) =
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where
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where ¢”(y;) denotes the integration domain for yi. given that the kth variable
takes on the value y;,. Here, the integration domain is either (=, 7) or (7, +%).

In the special case of uncorrelated residuals, that is, p = 0 in Equation (5),
the y* variables are independent when conditioning on «, 3, and x so that P(y,

Yi» - - - » Yk—1la, B, x) simplifies considerably,
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In this case, only univariate normal distribution functions are involved so that
the essential computations of Equation (9) involve the two-dimensional integral
over a and B.

Perhaps because of the computational simplifications, the special case of
p = 0 appears to be the standard model used in growth analysis with binary
response. This model was used in Gibbons and Bock (1987; see also Gibbons
& Hedeker, 1993). The analogous model with logit link was studied in Stiratelli
et al. (1984) and in Zeger and Karim (1991). Gibbons and Bock (1987) consid-
ered maximum likelihood estimation using Fisher scoring and EM procedures
developed for binary factor analysis in Bock and Lieberman (1970) and Bock
and Aitkin (1981). Stiratelli et al. (1984) considered restricted maximum likeli-
hood using the EM algorithm. Gibbons and Bock (1987) used a computational
simplification obtained by orthogonalizing the bivariate normal variables o and
B using a Cholesky factor so that the bivariate normal density is written as a
product of two univariate normal densities. They used numerical integration by
Gauss-Hermite quadrature, with the weights being the product of the one-
dimensional weights. For the case of p # 0, Gibbons and Bock (1987) used the
Clark algorithm to approximate the probabilities of the multivariate normal dis-
tribution for y* in Equation (10). Even when p = 0 the computations are heavy
when there is a large number of distinct x values in the sample. Zeger and Ka-
rim (1991) employed a Bayesian approach using the Gibbs sampler algorithm.
For recent overviews, see Fitzmaurice, Laird, and Rotnitzky (1993); Longford
(1993); Diggle, Liang, and Zeger (1994); and Rutter and Elashoff (1994).
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3. MORE GENERAL BINARY GROWTH MODELING

3.1. Critique of Conventional Approaches

In this section, weaknesses in conventional growth modeling with binary data
are presented, along with a more general model and its estimation.

The maximum likelihood approach to binary growth modeling leads to heavy
computations when p # 0. This seems to have caused a tendency to restrict mod-
eling to an assumption of p = 0. Experience with continuous response variables,
that is, when y = y*, indicates that p = 0 is not always a realistic assumption.
The assumption of a single p parameter that is different from zero, as in the
Gibbons-Bock first-order autoregressive model, also may not be realistic in some
cases. Instead, it appears necessary to include a separate parameter for at least
the correlations among residuals that are adjacent in time.

Furthermore, the conventional model specification of T =0, ¥, = | has no
effect when, as in standard probit regression, there is only a single equation that
is being estimated. It is important to note, however, that this is not the case in
longitudinal analysis. The longitudinal analysis can be characterized as a multi-
variate probit regression in which the multivariate response consists of the same
response variable at different time points. This has the following consequences.

First, the standardization of T to zero at all time points needs clarification. In
the binary case, this does not lead to incorrect results but does not show the
generalization to the case of ordered categorical response or to the case of mul-
tiple indicators. The threshold 7 is a parameter describing a measurement char-
acteristic of the variable y, namely, the level (proportion) of y with zero values
on x. Because the same y variable is measured at all time points, equality of this
measurement characteristic over time is the natural model specification. In the
binary case, however, the equality of the level of y across time points is accom-
plished by p, in Equation (2) affecting y equally over time as a result of the
unit coefficient of o, in Equation (1), which is not explicitly shown. Setting 7 = 0
is therefore correct, although an equivalent specification would take T as a pa-
rameter held equal over time points while fixing . at zero. In the ordered cat-
egorical case, however, there are several T parameters involved for a y variable
and equality over time of such T’s is called for. In this case, p, cannot be sepa-
rately estimated but may be fixed at zero. The multiple indicator case will be
discussed in the next section.

Second, Y is the standard deviation of the residual variation of the latent
response variable y*, and fixing it at unity implicitly assumes that the residual
variation has the same value over time. This is not realistic because over time
different sources of variation not accounted for by the time-varying variable v,
are likely to be introduced. Again, experiences with continuous response vari-
ables indicate that the residual variance often changes over time.
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In presentations using the logit version of the model, the parameters of 7 and
Y, are usually not mentioned (see, e.g., Diggle et al, 1994). This is probably
because the threshold formulation, often used in the probit case, is seldom used
in the logit case. This has inadvertently lead to an unnecessarily restrictive logit
formulation in growth modeling.

3.2. The Approach of Muthén

An important methodological consideration is whether computational difficul-
ties should lead to a simplified model, such as using p = 0 or s, = 1, or whether
it is better to maintain a general model and instead use a simpler estimator. Here,
I describe the latter approach, building on the model of Equations (1) and (2) to
consider a more general model and a limited-information estimator.

First, the {,, variables of Equation (1) are allowed to be correlated among
themselves and are allowed to have different variances over time. Second, mul-
tiple indicators y;;, j = 1,2, . . . , p are allowed at each time point,

)’:Aj = }\jnik + €y (12)
where \; is a measurement (slope) parameter for indicator j, €;; is a measure-
.me{n error residual for variable j at time k, and y;; = 1 if y;fkj > 1,. The multiple
indicator case is illustrated by Example 2 in which four measurements of a single
construct “neurotic illness” (v) were considered. Given that the 7°s and the A’s
are measurement parameters, a natural model specification would impose equal-
ity over time for each of these parameters. Using normality assumptions for all
three types of residuals, {, 8, and €, again leads to a multivariate probit regres-
sion model.

This generalized binary growth model is a special case of the structural equa-
tion model of Muthén (1983, 1984). The longitudinal modeling issues just dis-
cussed were also brought up in Muthén (1983), where a random intercept model
like Equations (1), (2), and (12) was fitted to the Example 2 data. The problems
with standardization issues related to T and {5, have also been emphasized by
Arminger (see, e.g., ch. 3, this volume) and Muthén and Christofferson (1981)
in the context of structural equation modeling.

In the approach of Muthén (1983, 1984), conditional mean and covariance
matrix expressions corresponding to Equations (4) and (5) are considered. This
is sufficient given the conditional normality assumptions. Muthén (1983, 1984)
introduced a diagonal scaling matrix A containing the inverse of the conditional
standard deviations of the latent response variable at each time point,

A = diag[V(y*|x)] " (13)

Muthén (1983, 1984) describes three model parts. Using the single-indicator
growth model example of Equations (4) and (5),
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o, = ATp (14)
- a, = A[Tw ] (15)
03 = 0= ;A(T\PQ,BT’ + ‘Ifgg)A, (16)

where‘l’;; is the KXK covanancemamx of ¢ (cf. Eq. 5). The three parts cor-

respond to the intercepts, slopes, and residual correlation matrix of a multivari-
ate probit regression. Note that () is a correlation matrix. '

The general model of Muthén (1983, 1984), including multiple indicators as
well as multiple factors at each time point, can be expressed as follows. Con-
sider a set of measurement relations for a p-dimensional vector y*,

y*=An+e, (17)

and a set of structural relations for an m-dimensional vector of latent variable
constructs m,

n=a+PBn+Ix+{ (18)

where A, a, B, I are parameter arrays, € is a residual (measuremeht error) vec-
tor with mean zero and covariance matrix ®, and { is a residual vector with
mean zero and covariance matrix . The scaling matrix A is also included in
this general framework, as is the ability to analyze independent samples from
multiple populations simultaneously.
Muthén (1983, 1984, 1987) used a least-squares estimator where with ¢ =
(0'1, 05, 0'3),,
' F=(—0) Wis—o0), (19)

where the s elements are arranged in line with o and are maximum likelihood
estimates of the intercepts, slopes, and residual correlations. Here, s, and s, are
estimates from probit regressions of each y variable on all the x variables,
whereas each s, element is a residual correlation from a bivariate probit regres-
sion of a pair of y variables regressed on all x variables. A generalized least-
squares estimator is obtained when the weight matrix W is a consistent estimate
of the asymptotic covariance matrix of s. In this case, a chi-square test of model
fit is obtained as n - F, where n is the sample size and F refers to the minimum
value of the function in Equation (19). (For additional technical details on the
asymptotic theory behind this approach, see Muthén & Satorra, 1995.) Muthén
(1984, 1987) presented a general computer program LISCOMP which carries

out these calculations.

3.3. Model Identification

Given that the response variables are categorical, the general binary growth
model needs to be studied carefully in terms of parameter identification. Under
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the normality assumptions of the model, the number of distinct elements of o
represents the total number of parameters that can be identified, therefore the
number of growth model parameters can be no larger than this. The growth model
parameters are identified if and only if they are identified in terms of the ele-
ments of 0. _ : -

It is instructive to consider first the conditional y* variance in some detail
for the case of binary growth modeling. Let [Aly2 denote the conditional vari-
ance of yy, given x. For simplicity, the focus is on the case with linear growth.
With four time points, the conditional variances of y* can be expressed in model
parameter terms as

(A1l = Vaa + Vg, (20
[A];2 = Yoo + 2Wpe + Ygp + Uy, @21
(AL = Yoo T 4bpa + g + gy, (22)
[Al3Z = Yuq + 6lgy + Nga + Yy .- (23)

Note that the A elements are different because of across-time differences in
contributions from ¥, as well as Y. In Equation (5), using the Gibbons-Bock
standardization of {s, = 1, there are no free s, parameters to be estimated. Con-
trary to this conventional approach, there are four different s, parameters in
Equations (18) through (21). Because the y* variables are not directly observed,
not all of these parameters are identifiable. Instead of assuming Y, = 1 for all
time points, as in Gibbons-Bock, the first diagonal element of A can be fixed to
unity, corresponding to the first time point. For the remaining time points, the A
elements in Equations (19) through (21) are the unrestricted parameters instead
of the residual y* variances of {. The residual variances are not taken as free
parameters to be estimated, but can be obtained from the other parameters using
Equations (18) through (21). Allowing the A parameters to be different across
time allows the residual variances to be different across time. With four time
points, this adds three parameters to the model relative to the conventional
model.

The (co)variance-related parameters of the model are in this case the three
free A elements (not the llJ;’S) and the three elements of ‘I'u,ﬁ. With covariates,
added parameters are py, g, Mg, Tps and g, . . - » Yx—1- It can be shown that
with four time points, covariances between pairs of residuals at adjacent time
points can also be identified in this model (see Muthén & Liu, 1994).

As opposed to the case of a single response variable, multiple indicator mod-
els allow for separate identification of the residual variances and the measure-
ment errors of each indicator. In this case, there is the additional advantage that
the residual variances for the latent variable constructs m are identified at all
time points. Multiple-indicator models would assume equality of the measure-
ment parameters (the 7’s and the \’s) for the same response variable across time.
In this case, the p, intercept is fixed at zero. The A matrix scaling is general-
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ized as follows. The scaling factors of A are fixed at the first time point for all
of the indicators to eliminate the indeterminacy of scale for each different y*
variable (corresponding to each indicator) at this time point. The scaling factors
of A are free for all indicators at later time points so that the measurement error
variances are not restricted to be equal across time points for the same response
variable.

3.4. Implementation in Latent Variable Modeling Software

In the case of continuous response variables, Meredith and Tisak (1984, 1990)
have shown that the random coefticient model of the previous section can be
formulated as a latent variable model. For applications in psychology, see
McArdle and Epstein (1987); for applications in education, see Muthén (1993)
and Willett and Sayer (1993); and for applications in mental health, see Muthén
(1983, 1991). For a pedagogical introduction to the continuous case, see Mu-
thén, Khoo, and Nelson Goft (1994) and Willett and Sayer (1993). Muthén (1983,
1993) pointed out that this idea could be carried over to the binary and ordered
categorical case. The basic idea is easy to describe. In Equation 1, «; is unob-
served and varies randomly across individuals. Hence, it is a latent variable. Fur-
thermore, in the product term B,1,, B; is a latent variable multiplied by a term ¢,
which is constant over individuals and can therefore be treated as a parameter.
The 1,5 may be fixed as in Equation (6), but with three or more time points they
may be estimated for the third and later time points to represent nonlinear growth.
More than one growth factor may also be used.

4. ANALYSES

Simulated and real data will now be used to illustrate analyses using the general
growth model with binary data.

4.1. A Monte Carlo Study

A limited Monte Carlo study was carried out to demonstrate the sampling be-
havior of the generalized least-squares estimator in the binary case. The model
chosen for the study has a single binary response variable observed at four time
points. There is one time-invariant covariate and one time-varying covariate (one
for each time point). The simulated data can be thought of as being in line with
the Example 1 situation in which the probability of a problem behavior declines
over time. Linear decline is specified with T as in Equation (6). Both the ran-
dom intercept (o) and the random slope () show individual variation as repre-
sented both by their common dependence on the time-invariant covariate (w) and
their residual variation (represented by W,,5). The o variable regression has a
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positive intercept () and a positive slope (w,) for w, whereas the B variable
regression has a negative intercept () and a negative slope (wg) for w. In this
way, the time-invariant covariate can be seen as a risk factor, which with
increasing value increases a, that is, it increases the initial probability of the
problem and decreases {8, making the rate of decline larger (this latter means
that the higher the risk factor value, the more likely the improvement is in the
problem behavior over time). The regression coefficient for the response
variable on the time-varying covariates (the v;’s) is positive and the same at all
time points. The residual variances ({;) are changing over time and there is a
nonzero residual covariance between adjacent pairs of residuals that is assumed
to be equal. The time-varying covariates are correlated 0.5 and are each
correlated 0.25 with the time-invariant covariate. All covariates have means of
0 and variances of 1. The population values of the model parameters are given
in Table 1.

TABLE 1 Monte Carlo Study: 500 Replications Using LISCOMP GLS for Binary
Response Variables

Parameter True value n = 1000 n =250
P 0.50 0.50 (0.05, 0.05) 0.50 (0.10, 0.09)
[T —-0.50 —0.51 (0.04, 0.04) -0.50 (0.10, 0.09)
Ty 0.50 0.50 (0.05, 0.05) 0.50 (0.10, 0.10)
T —-0.50 —0.51 (0.04, 0.04) —0.50 (0.09, 0.09)
vl 0.70 0.70 (0.06, 0.05) 0.70 (0.11, 0.11)
v¥2 0.70 0.72 (0.11, 0.11) 0.76 (0.40, 0.29)
v3 0.70 0.71 (0.09, 0.09) 0.71 (0.19, 0.18)
v4 0.70 0.71 (0.08, 0.08) 0.71 (0.18, 0.17)
Yoo 0.50 0.49 (0.13, 0.13) 0.48 (0.29, 0.26)
YPo -0.10 —0.09 (0.06, 0.05) —0.08 (0.13, 0.11)
yBe 0.10 0.10 (0.04, 0.03) 0.10 (0.09, 0.08)
Yht+1, k 0.20 0.22 (0.09, 0.08) 0.26 (0.31, 0.22)
All 1.00 0.99 (0.13, 0.13) 1.01 (0.29. 0.25)
A22 1.00 1.00 (0.11, 0.11) 1.02 (0.25, 0.22)
A33 1.00 1.00 (0.11, 0.11) 1.03 (0.25, 0.23)
x* Average (df = 15) 14.75 15.5]
SD 5.53 5.61
5% Reject proportion 5.2 5.4
1% Reject proportion 1.0 2.0

Note. In parentheses are empirical standard deviations, standard errors. df, degrees of freedom; SD,
standard deviation.
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_Two sample sizes were used, a larger sample size of n = 1000 and a smaller
sample of n = 250. Multivariate normal data were generated for' y* and x, and
the y* variables Wcre"di’chotorhized'at;zéro». The generalized least-squares esti-
mator was used. The parameter values chosen (see Table 1) imply that the pro-
portion of y = 1 at the four time points is .64, .50, .34, and .25. The parameters
estimated were g, Kg: To Tgs Yoo Yis Y2 V3 Voo Upa Upps Uy, 2, (2 single
parameter), [Al;, [Aly,, and [Als3. The threshold parameter T was fixed at zero
and the scaling factor [A],; was fixed at one. As discussed in section 3.3, the
four residual variances of {5, are not free parameters to be estimated but they
are still allowed to differ freely across time (their population values are 5, .6,
5, and .2) because the A parameters are free. The degrees of freedom for the
chi-square model test is 15. A total of 500 replications were used for both sample
sizes in Table 1. Table 1 gives the parameter estimates, the empirical standard
deviation of the estimates across the 500 replications, the mean of the estimated
standard errors for the 500 replications, and a summary of the chi-square test of
model fit for the 500 replications.

As seen in Table 1, the estimates for the n = 1000. case show almost no pa-
rameter bias, the empirical variation is very close to the mean of the standard
errors, and the chi-square test behaves correctly. As expected, the empirical stan-
dard deviation is cut in half when reducing the sample size to a quarter, from
1000 to 250. Exceptions to this, however, are the regression slope for the sec-
ond time point <y, and the residual covariance Y .- The cause for these anoma-
lies needs further research. In these cases, the standard errors are also strongly
underestimated. In the remaining cases, the standard errors agree rather well with
the empirical variation, with perhaps a minor tendency to underestimate the stan-
dard errors for the (co)variance-related parameters of ¢ and A. At n = 250, the
variation in the regression intercept and slope parameter (v and ) estimates is
low enough for the hypotheses of zero values to be rejected at the 5% level. For
the (co)variance-related parameters of s, however, this is not the case and the A
parameters also have relatively large variation. The chi-square test behavior at

n = 250 is quite good.

4.2. Analysis of Example 2 Data

The model used for the preceding simulation study will now be applied to the
Example 2 data of neurotic illness as described previously (for more details, see
Henderson et al., 1981). Each of the four response variables will be modeled
separately. They can also be analyzed together as multiple indicators of neurotic
illness, but this will not be done here. Previous longitudinal analyses of these
data were done in Muthén (1983, 1991).

Summaries of the data are given in Table 2. As is shown in Table 2, there is
a certain drop from the first to the remaining occasions in the proportion of
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TABLE 2 Descriptive Statistics for Example 2 Data

Response variables Time 1 . Time 2 . Time 3 Time 4
Percentage yes: : :
Anxiety 26.4 16.5 15.6 16.0
Depression 25.5 14.7 17.7 139
Irritability 403 31.2 28.1 29.0
Nervousness 242 19.0 16.0 15.6
Covariates
Means Variances
N 9.31 20.66
Ll 3.86 6.54
L2 3.17 5.89
L3 2.58 4.90
LA 2.42 5.27
Correlations
N 1.00
Ll 0.22 1.00
L2 0.16 0.54 1.00
L3 0.18 0.50 0.49 1.00
LA 0.21 0.53 0.49 0.51 1.00

people answering yes to the neuroticism items. There is also a corresponding
drop in the mean of the life event score. Because the latter is used as a time-
varying covariate, this means that the data could be fit by a model that does not
include a factor for a decline in the response variable, but which instead uses
only a random intercept factor model. Given previous analysis results, gender is
dropped as a time-invariant covariate. Only the N score, the long-term suscep-
tibility to neurosis, will be used to predict the variation in the random intercept
factor.

Two types of models will be fit to the data. First, the general binary growth
model will be fit, allowing for across-time variation in the latent response vari-
able residual variance and nonzero covariances between pairs of residuals (the
residual covariances are restricted to being equal). Second, the conventional bi-
nary growth model, in which these features are not allowed for, will be fit as a
comparison. In both cases, the same quantities as in Table 1 will be studied,
along with two types of summary statistics. One summary statistic is R?, that
is, the proportion of variation is the a factor accounted for by N. A second sta-
tistic is the proportion that the a factor variation makes up of the total variation
in the latent response variable y*, calculated at all time points. The a factor
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represents individual variation in a neurotic illness trait, variation that is present
at all time points. In addition to this variation, the y* variation is also influ-
enced by time-specific variation caused by time-varying, measured covariates
(Ls) and time-specific unmeasured residuals ({s). In this way, the proportion is
a time-varying measure of how predominant the trait variation is in the responses.

Table 3 shows the results for the general binary growth model. The model
fits each of the four response variables very well. As expected, the N score has
a significantly positive influence (r,) on the random intercept factor and the L
scores have significantly positive influences (9s) on the probability of yes an-
swers for the response variables.

For none of these four response variables is the residual covariance signifi-
cantly different from zero. Note, however, from the simulation study at n = 250
that the variation in this estimate is quite large and that a large sample size is
required to reject zero covariance. As shown in the simulation study, the point
estimate of the covariance may be of reasonable magnitude. The model with

TABLE 3 Analysis of Example 2 Data Using the General Growth Model

Ancxiety Depression Irritability Nervousness
[ive —1.46 (0.21) —2.56 (0.34) —1.21 (0.20) —2.43(0.27)
T 0.06 (0.01) 0.13 (0.02) 0.06 (0.01) 0.14 (0.02)
vyl 0.08 (0.03) 0.14 (0.04) 0.09 (0.03) 0.08 (0.03)
2 0.05 (0.02) 0.02 (0.03) 0.08 (0.02) 0.03 (0.02)
v3 0.06 (0.03) 0.12 (0.03) 0.07 (0.02) 0.05 (0.03)
v4 0.03 (0.02) 0.04 (0.05) 0.06 (0.02) 0.01 (0.03)
Poo 0.31 (0.08) 0.39 (0.10) 0.27 (0.07) 0.69 (0.09)
Pk, k+1 —0.01 (0.05) ~0.12 (0.10) —0.04 (0.04) —0.11 (0.06)
All 1.37 (0.19) 0.88 (0.15) 1.41 (0.22) 1.01 (0.11)
A22 1.48 (0.21) 1.08 (0.19) 1.43 (0.24) 1.14 (0.11)
A33 1.20 (0.18) 0.88 (0.14) 1.32 (0.22) 1.00 (0.11)
x2(19) 16.49 21.73 26.02 23.30
p-value .624 298 130 225
R%a 0.19 0.47 0.22 0.37
Pl 0.34 0.50 0.30 0.75
P2 0.31 0.41 0.28 0.52
P3 0.31 0.42 0.29 0.54

P4 0.30 0.41 0.28 0.52
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nonzero residual covariance is therefore maintained. In this particular applica-
tion, the estimate is small.

The scaling factors of A are not significantly different from unity at the 5%
level for all but one of the cases. Because in this model there is no § factor, A
is a function of the a factor residual variance s, and the residual variance {5,
(cf. Egs. 18-21). Unit values for the A scaling factors would therefore indicate
that the residual variances are constant over time in this application. Note, how-
ever, from the Table 1 simulation results that the sampling variation in the A
estimates is quite large at n = 250 which makes it difficult to reject equality of
residual variances over time. The Table 1 results also indicate that the point es-
timates for A are good.

Table 4 shows the results for the conventional binary growth model. This
model cannot be rejected at the 5% level in these applications. The parameter
estimates are, in most cases, similar to those for the generalized model of Table
3. Differences do, however, show up in the values for the trait variance propor-
tions, labeled P, through P, in Tables 3 and 4. Relative to the more general
model, the conventional model overestimates these proportions for three out of
the four response variables. For example, the conventional model indicates that
there is a considerable dominance of trait variation in the response variable Ner-
vousness, with a proportion of .81 for the last three time points (see Table 4).

TABLE 4 Analysis of Example 2 Data Using the Conventional Growth Model

Anxiety Depression Irritability Nervousness
fve -1.79 (0.17) —2.40 (0.16) —1.56 (0.16) —2.56 (0.23)
o 0.07 (0.01) 0.12 (0.01) 0.08 (0.01) 0.15 (0.02)
vl 0.12 (0.02) 0.13 (0.02) 0.12 (0.02) 0.09 (0.03)
v2 0.06 (0.03) 0.03 (0.03) 0.10 (0.02) 0.03 (0.02)
v3 0.05 (0.04) 0.10 (0.03) 0.09 (0.03) 0.03 (0.03)
v4 0.04 (0.03) 0.05 (0.03) 0.07 (0.03) 0.01 (0.03)
Yoo 0.50 (0.51) 0.31 (0.06) 0.42 (0.06) 0.72 (0.05)
x(23) 26.12 26.29 33.97 29.02
p-value 295 287 .066 180
R’a 0.17 0.49 0.24 0.39
Pl 0.50 043 0.45 0.78
P2 0.54 0.47 0.46 0.81
P3 0.54 0.45 0.47 0.81
P4 0.54 0.46 0.48 0.81
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The more general model of Table 3 points to a much lower range of values for
the last three time points, .52 to .54.

5. CONCLUSIONS

This chapter has discussed a general framework for longitudinal analysis with
binary response variables. As compared with conventional random effects mod-
eling with binary response, this general approach allows for residuals that are
correlated over time and variances that vary over time. It also allows for mul-
tiple indicators of latent variable constructs, in which case it is possible to iden-
tify separately residual variation and measurement error variation. The more gen-
eral model can be estimated by a limited-information generalized least-squares
estimator. The general approach fits into an existing latent variable modeling
framework for which software has been developed.

A Monte Carlo study showed that the limited-information generalized least-
squares estimator performed well with sample sizes at least as low as n = 250. At
this sample size, the sampling variability is not unduly large for the regression
parameters of the model, but it is rather high for the (co)variance-related parame-
ters of the model. Analyses of a real data set indicated that the differences in key
estimates obtained by the conventional model are not always markedly different
from those obtained by the more general model, but can lead to quite different
conclusions about certain aspects of the phenomenon that is being modeled.

The general approach should be of value for developmental studies in which
variables are often binary and in which the variables are often very skewed and
essentially binary. The general model allows for a flexible analysis which has
so far been used very little with binary responses. A multiple-cohort analysis of
this type is carried out in Muthén and Muthén (1995), which describes the de-
velopment of heavy drinking over age for young adults.
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