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Abstract

Growth modeling of multilevel data is presented within a latent variable frame-
work that allows analysis with conventional structural equation modeling software.
Latent variable modeling of growth considers a vector of observations over time
for an individual, reducing the two-level problem to a one-level problem. Analo-
gous to this, three-level data on students, time points, and schools can be modeled
by a two-level growth model. An interesting feature of this two-level model is
that contrary to recent applications of multilevel latent variable modeling, a mean
structure is imposed in addition to the covariance structure. An example using
educational achievement data illustrates the methodology.

1 Introduction

Longitudinal studies of growth in educational achievement typically use cluster sam-
pling of students within schools. This gives rise to hierarchical data with three levels:
student, time point, and school. With large numbers of students per school, ignoring
the clustering of students within schools may give strongly distorted inference even with
modest intraclass (school) correlations. While three-level modeling is well established
with manifest dependent variables (see, e.g., Bock, 1989; Bryk & Raudenbush, 1992;
Goldstein, 1987), less work has been done in the area of latent variables.
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The general framework of latent variable modeling is particularly well suited to
growth studies of educational achievement data. Longitudinal educational data is fre
quently collected at fixed time points corresponding to grades. The relevant time di-
mension for achievement is grade because this reflects the amount of learning that has
taken place. In this way, all individuals have the same value on the time dimension at al]
measurement occasions. This special case offers a convenient simplification which puts
the problem in a conventional latent variable framework.

Formulated as a latent variable growth model, the time dimension is transformed
into a multivariate vector and the three-level data hierarchy is reduced to a two-level hi-
erarchy. Two-level latent variable models have been studied in the context of covariance
structure models, but the growth model also imposes a mean structure. Relative to con-
ventional three-level modeling, the two-level latent variable growth model formulation
offers considerable flexibility in the modeling. Using the Muthén (1989) approach to
multilevel data, maximum-likelihood estimation under normality assumptions is carried
out with conventional structural equation modeling software.

The methodology is illustrated using mathematics achievement data on students in
grades 7 - 10 from the Longitudinal Study of American Youth. Here, an average of about
50 students per school are observed in 50 schools for mathematics achievement scores
having intraclass correlations of 0.15-0.20.

Sections 2 and 3 will review growth modeling using a simple random sample of
individuals. Subsequent sections add the multilevel complication of analyzing individuals
observed within schools.

2 Random coefficient growth modeling: Two-level
hierarchical modeling

Random coefficient growth modeling (see, e.g. Laird & Ware, 1982) goes beyond conven-
tional structural equation modeling of longitudinal data and its focus on auto-regressive
models (see, e.g. Joreskog & Sorbom, 1977; Wheaton, Muthén, Alwin & Summers,
1977) to describe individual differences in growth. The modeling is of the following
type. Consider the indices

Individuali : t=1,2,...,n
Time point t : t=1,2,...,T
and the variables

zi : time-related variable (age, grade)
wi : time-varying covariate
z; : time-invariant covariate
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and the model

Vit = a; + Biis + vewir + G (1)
where

{ ai = a+ 7oz + bai (2)
Bi = B+ mpzi + 8pi

Here, (;; is a residual which is independent of z, é,; and dgi, 64 and 6g; are correlated,
and 6, and és; are independent of z. Here, the special case of linear growth is described,
where «; is the random intercept or initial status and f; is the random slope or growth
rate. Non-linear growth can also be accomodated.

An important special case that will be the focus of this chapter is where the time-
related variable z;; = z;. An example of this is educational achievement studies where z,
corresponds to grade. The z, values are for example 0, 1, 2, ..., T — 1 for linear growth.

3 Latent variable modeling formulation of growth

As shown in Meredith and Tisak (1984, 1990), the random coefficient model of the
previous section can be formulated as a latent variable model (for applications in psy-
chology, see McArdle & Epstein, 1987; for applications in education, see Muthén 1993
and Willett & Sayer, 1993; for applications in mental health, see Muthén, 1983, 1991).
The basic idea can be simply described as follows. In equation 1, ¢; is a latent variable
varying across individuals. Assuming the special case of z;; = z, the z variable becomes
a constant which multiplies a second latent variable §;. The equation 1 outcome variable
y;; for individual 7 is now reformulated as a T x 1 vector for individual :.

The model may be shown as in the path diagram of Figure 1. Note for example
that the constants of z; are the coefficients for the influence of the # factor on the y
variables. This makes it clear that non-linear growth can be accomodated by estimating
the z; coefficients, e.g. holding the first two values fixed at 0 and 1, respectively, for
identification purposes.

Given the path diagram in Figure 1, input specifications can be given for conventional
structural equation modeling software.

The general SEM framework may be described as

Y'=v+An+e
{Bn=fe+( (3)

where the mean and variance of y*,

E(y") = v+A( - B) '« "
{ V(y*) = A( — By ¥(I — B)"'A'+ © (
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Figure 1: Latent Variable Growth Model Formulation

see, for example, Muthén (1989).

Translating Figure 1 into this general model, we have y* = (y7,"**,y11,2, Ws, Wo,
wlO)’ T’I = (ytl’ a, ﬂ))

_ _ _ _ Bu 1 x _ ‘I’yo 0
v=0, A=[10], e=0, B—[Bn 0 0]\11..[ : \Iu.,p]

and &' = (0,---,0, E(z), E(ws), E(ws), E(w10), E(a), E(B))-

The growth model imposes a structure on the mean vector and covariance matrix. It
is clear that the Figure 1 model can be easily generalized to applications with multiple
indicators of latent variable constructs instead of single outcome measurements y at
each time point. The covariates may also be latent variables with multiple indicators.
Muthén (1983) showed that binary outcome measures y can also be handled when the
y* variables are measured dichotomously. In the continuous variable case, maximum-
likelihood estimation is the usual estimator in SEM. Estimates may also be obtained for
the individual growth curves by estimating the individual values of the intercept and
slope factors o and 3. This relates to Empirical Bayes estimation in the conventional
growth literature (see, e.g. Bock, 1989).

4 A three-level hierarchical model

We will now add the complication of cluster sampling to the growth modeling. Here,
data are obtained on individuals observed within groups. Such hierarchical data are
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naturally obtained in educational studies where students are sampled within randomly
sampled schools. It is well-known that ignoring the hierarchical nature of the data and
applying techniques developed for simple random samples distorts the standard errors
of estimates and the chi-square test of model fit (see, e.g., Muthén & Satorra, 1993).
Standard errors are deflated and chi-square values are inflated. This is particularly
pronounced when the intraclass correlations are large and the number of individuals
within each group is large. The following latent variable methodology draws on Muthén
(1994a).

Conventional random-coefficient modeling for such three-level data is described e.g.
in Goldstein (1987) and Bryk and Raudenbush (1992). For

Individual 1=1,2,...,n

Time t=1,2,..T

Group 1 ¢g=12,...,G

(School)
consider the growth model, again expressed for the special case of z;; = z,

Yitg = Q;g + ztﬂig + Ct'tg (5)

where for simplicity there are no covariates

a;, = ag + 50,.'9

{ Big = By + bpig (©)
ag =a+ by

{ By =B+ 84 M

5 A two-level formulation of multilevel growth

In the case of growth modeling using a simple random sample of individuals, it was
possible to translate the growth model from a two-level model to a one-level model by
considering a T x 1 vector of outcome variable for each individual. Analogously, we may
reduce the three-level model of the previous section to two levels as follows.

Yig o
vo=| |- (), ®
YiTg

which may be expressed in five terms

vo=lx (5 )+in (2 )+ e (o ) o, ©

The first term represents the mean as a function of the mean of the initial status and
the mean of the growth rate. The second and third terms correspond to between-group
(school) variation. The fourth and fifth terms correspond to within-group variation.
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6 Latent variable modeling of two-level growth data

Assume g = 1, 2, ..., G independently observed groups with ¢ = 1, 2, ..., Ny individual
observations within group g. Let z and y represent group- and individual-level variables,
respectively. Arrange the data vector for which independent observations are obtained
as

dlg = (Z;, gl,y;z,.u, gNg) (10)

where we note that the length of d, varies across groups. The mean vector and covariance
matrix are,

pa, = W21y, ®uyl (11)
Y2z symmetric
Edo ( 1IN, ® Eyz In, ® Zu + 1n, ;V, ® LB ) (12)

Assuming multivariate normality of dg, the ML estimator minimizes the function

G
F=Y {log|Sq,| + (d; — #a,T3 (4 — q,)} (13

g=1
which may be simplified as (cf. McDonald & Goldstein, 1989; Muthén, 1989, 1990)

F= Y2?Gu{In|Ts,| +tr(E5,(Ss, + Na(ta — #)(%a — 1))}
+(N - G){ln|Zw| + tr[Ep'VlSpw]} (14)

where
= N4Z,. symmetric
Ba = \ MiZy. Tw+ NiTs

G s
SB.= NaG7' ). ( ;i: _ ;j ) [(2ax — 2a)'(Fax — Fa)']
k=1

= zd"‘;uz
Vd— U= _
d— H (ya-;u,,)

G Ny
Spw = (N — G)™ ZZ(yyi — 9g)(Ygi — Fa)'

g=1li=1
Here, D denotes the number of groups of a distinct size, d is an index denoting a distinct
group size category with group size Ny, G4 denotes the number of groups of that size, Sp,
denotes a between-group sample covariance matrix, and Spw is the usual pooled-within

sample covariance matrix.

Muthén (1989,1990) pointed out that the minimization of the ML fitting function
defined by equation 14 can be carried out by conventional structural equation modeling
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software, apart from a slight modification due to the possibility of singular sample co-
variance matrices for groups with small G4 values. A multiple-group analysis is carried
out for D+1 groups, the first D groups having sample size G4 and the last group having
sample size N — G. Equality constraints are imposed across the groups for the elements
of the parameter arrays p, .., £,,, £p, and Z. To obtain the correct chi-square test
of model fit, a separate H; analysis needs to be done (see Muthén, 1990 for details).

Muthén (1989, 1990) also suggested an ad hoc estimator which considered only two
groups,

F'= G{in[Ss] +tr[Z5\(Ss +c(o - )@ - u))]}
+(N - G){ln Izwl + tr[E;VlSpw]} (15)

where the definition of the terms simplifies relative to equation 14 due to ignoring the
variation in group size, dropping the d subcript, and using D =1, Gy = G, and N, = c,
where c is the average group size (see Muthén, 1990 for details). When data are balanced,
i.e. the group size is constant for all groups, this gives the ML estimator. Experience
with the ad hoc estimator for unbalanced data indicates that the estimates, and also the
standard errors and chi-square test of model fit, are quite close to those obtained by the
true ML estimator. This experience, however, is limited to models that do not have a
mean structure and is therefore not directly applicable to growth models.

In line with Muthén (1989, 1990), Figure 2 shows a path diagram which is- useful in
implementing the estimation using F or F’. The figure corresponds to the case of no
covariates given in equations 5 - 7 and 9. It shows how the covariance structure

Lw + Nq4Lp (16)

can be represented by latent variables, introducing a latent between-level variable for
each outcome variable y. These latent between-level variables may also be related to
observed between-level variables z,. The between-level & and f factors correspond to
the 8o, and 85, residuals of equation 7. The within-level a and 8 factors correspond to
the d4,, and ép,, residuals of equation 6. From equation 9 it is clear that the the influence
from these two factors is the same on the between side as it is on the within side. In
Figure 2, the Lp structure is identical to the Ly structure. A strength of the latent
variable approach is that this equality assumption can easily be relaxed. For example,
it may not be necessary include between-group variation in the growth rate.

Specific to the growth model is the mean structure imposed on x in equation 14,
where u represents the means of group- and individual-level variables. In the specific
growth model shown in Figure 2, the mean structure arises from the five observed variable
means being expressed as functions of the means of the a and A factors, here applied
on the between side, see equation 9. Equation 14 indicates that the means need to be
included on the between side of Figure 2 given that the mean term of F is scaled by
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Figure 2: Two-level Latent Variable Growth Model Formulation

N, while the means on the within side are fixed at zero. This implies that dummy zero
means are entered for the within group. The degrees of freedom for the chi-square test
of model fit obtained in conventional software then needs to be reduced by the number
of y variables.

Further details and references on latent variable modeling with two-level data are
given in Muthén (1994b), also giving suggestions for analysis strategies. Software is
available from the author for calculating the necessary sample statistics, including intr-
aclass correlations.

7 Analysis of longitudinal achievement data

Mathematics achievement data from four time points will be used to illustrate the
methodology described above. Data are from grades 7-10 of The Longitudinal Study
of American Youth (LSAY) and were collected every Fall starting in 1987. The data
we will analyze consists of a total sample of 2,488 students in 50 schools. The average
school size is therefore 49. The intraclass correlations for math achievement for the four
grades are estimated as 0.19, 0.16, 0.16, and 0.14.

The ML estimator of equation 14 will be reported. As a comparison, the ad hoc
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estimator of equation 15 will also be given for the final model. As a further comparison,
the conventional ML estimator assuming a simple random sample will also be reported.

As an initial model, the linear growth model using z; = 0,1, 2,3 was used, resulting
in a chi-square value of 18.69 with 5 df ( p < 0.01). It is interesting to note that
conventional modeling gives a higher chi-square value with fewer degrees of freedom,
41.85 with 2 df. This illustrates the inflation of chi-square values when ignoring the
clustering so that proper models might be inadvertently rejected.

To investigate if the misfit is due to the assumption of equal covariance structure
on the between and within sides, the £p structure was relaxed and an unrestricted
¥ p matrix was used (the latent between-level variables are then freely correlated). This
improved the fit, but the improvement was not significant on the 1% level (the chi-square
value was 9.17 with 2 df and p = 0.01; the chi-square difference test has a chi-square of
9.52 with 3 df, p > 0.02).

It was decided to retain the assumption of equal covariance structure on the between
and within sides and instead relax the linearity assumption, z; = 0,1, 2,3 by letting the
last two values be free to be estimated. This non-linear growth model gave a strongly
significant improvement over the initial model (the chi-square value was 6.27 with 3 df
and p=0.10; the chi-square difference value was 12.43 with 2 df and p < 0.001). The
estimates from this model are given in Table 1 below.

Table 1 gives estimates from three procedures: using the incorrect, conventional ML
estimator, using the correct multilevel ML estimator, and using the ad hoc multilevel
estimator. Growth scores refers to the values of z;.

The multilevel ML approach shows that the estimated growth score for grade 9 is
2.505 which is larger than the linear growth value of 2.0. This means that growth is
accelerated during grade eight when many new topics are introduced. The growth rate
mean is positive as expected. The variation in both the initial status and the growth
rate are significantly different from zero on the within (student) level, but that is not
the case for the growth rate variation on the between (school) level. This indicates that
schools vary more with respect to the intake of students than how the students develop in
achievement over time. Variation in intake may depend on socio-economic neighborhood
factors. The estimates show that about 18 % of the total variation in initial status is
due to across-school variation. This is in line with the observed intraclass correlations.
The within-level correlation between initial status and growth rate is 0.43.

Comparing the conventional ML approach with the multilevel ML approach, it is
seen that the parameter estimates of the growth score and the growth rate mean are
close. As expected, however, the standard errors for these estimates are too low for
the conventional approach. The parameter estimates of initial status and growth rate
variances and covariance are quite different. The conventional analysis estimates the
total variance, adding between and within variation. The correlation between initial
status and growth rate is 0.33, which is lower than the multilevel value of 0.43 for the
within level.
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Table 1: Estimates for three approaches to multilevel growth modeling

Conventional ML ML Multilevel Ad Hoc Multilevel
Analysis Analysis Analysis

Estimate SE Estimate SE Estimate SE

Initial Status Mean 51.311 0.073 51.125 0.120 51.343 0.129
Growth scores
Grade 8 1.00* - 1.00* - 1.00* -
Grade 9 2.499 0.095 2.508 0.184 2.541 0.202
Gradel0 3.636 0.153 3.635 0.290 3.691 0.318
Growth rate mean 2'.443 0.112 2.433 0.229 2.400 0.244

Variance of
Initial Status 87.032 4.795 66.202 4.277 66.248 4.241
Growth Rate 1.678 0.601 1.519 0.553 1.465 0.536
Covariance of

Initial Status,
Growth Rate 3.928 1.406 4.352 1.357 4.338 1.337

Residual variance of y

Grade 7 12.614 4.127 15.118 3.858 15.272 3.827
Grade 8 15.964 2.210 18.964 2.085 19.099 2.099
Grade 9 25.956 2.844 22.460 2.839 22.474 2.886
Grade 10 43.231 5.393 38.983 5.531 38.833 5.683

Between Variance of
Initial status 14.444 3.348 15.406 3.560
Growth Rate 0.094 0.068 0.112 0.077

Between Covariance of

Initial status,

Growth Rate 0.839 0.339 0.909 0.369
Between
Residual variance of y
Grade 7 1.133 0.439 1.342 0.501
Grade 8 0.718 0.278 0.850 0.317
Grade 9 0.220 0.232 0.331 0.271
Grade 10 0.563 0.443 0.766 0.513

*Fixed
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Comparing the ad hoc multilevel approach with the ML multilevel approach, it is
seen that the parameter estimates are on the whole reasonably close. For example, the
ratio of between to total variance in initial status is 19 % compared to 18 % and the
within-level correlation between initial status and growth rate is 0.44 compared to 0.43.
The standard errors also seem close enough to serve as a rough approximations. The
approximation to the chi-square value is 6.51 compared to 6.27 for the ML multilevel
approach.

8 Conclusions

This chapter has shown that for an important special case it is possible to use the
framework of latent variable modeling to carry out quite general growth modeling of
three-level data. Maximum-likelihood estimation under normality assumptions can be
carried out with existing structural equation modeling software. A simpler, ad hoc,
estimator appears to work well and may be useful at least for initial model exploration.
This provides a useful tool for educational research with longitudinal data on students
observed within schools and other data with similar structures.
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