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LATENT VARIABLE MODELING
OF LONGITUDINAL AND
MULTILEVEL DATA

Bengt Muthén*

An overview is given of modeling of longitudinal and multilevel
data using a latent variable framework. Particular emphasis is
placed on growth modeling. A latent variable model is presented
for three-level data, where the modeling of the longitudinal part of
the data imposes both a covariance and a mean structure. Exam-
ples are discussed where repeated observations are made on stu-
dents sampled within classrooms and schools.

1. INTRODUCTION

The concept of a latent variable is a convenient way to represent statistical
variation not only in conventional psychometric terms with respect to con-
structs measured with error, but also in the context of models with random
coefficients and variance components. These features will be studied in
this paper. The random coefficient feature is shown to present a useful way
to study change and growth over time. The variance component feature is
shown to reflect correctly common cluster sampling procedures.
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This paper gives an overview of some aspects of latent variable
modeling in the context of growth and clustered data. A new multilevel
latent variable model is presented which not only has a covariance struc-
ture but also a mean structure, where the mean structure arises naturally
from the growth perspective. Emphasis is placed on the benefits that can
be gained from multilevel as opposed to conventional modeling, which
ignores the multilevel data structure. Data from large-scale educational
surveys are used to illustrate the points.

The paper is organized as follows. Sections 2—-6 discuss theory and
Sections 7 and 8 applications. Section 2 discusses aggregated versus dis-
aggregated modeling and Section 3 intraclass correlations and design ef-
fects in the context of a two-level latent variable model. In Section 4, a
two-level latent variable model and its estimation for continuous-normal
data will be presented as a basis for analyses. Section 5 shows how a
three-level model can be applied to growth modeling and how it can be
reformulated as a two-level model. Section 6 shows how this modeling can
be fit into the two-level latent variable framework and how the estimation
can be carried out by conventional structural equation modeling software.
The remaining sections present applications. Section 7 uses two-wave data
on mathematics achievement for students sampled within classrooms. Sec-
tion 7.1 discusses measurement error when data have both within- and
between-group variation and gives an example of estimating reliability for
multiple indicators of a latent variable. Section 7.2 uses the same example
to discuss change over time in within- and between-group variation taking
unreliability into account. Section 8 takes the discussion of change over
time further using a four-wave data set on students sampled within schools.
Here, a growth model is formulated for the relationships between socio-
economic status, attitude toward math, and mathematics achievement. Is-
sues related to the assessment of stability and cross-lagged effects are also
discussed.

2. AGGREGATED VERSUS DISAGGREGATED MODELING

Consider the following two-level, hierarchical data structure. Let u,;, =
(Ugi) Ugin-..Uy,)" denote a p-dimensional vector for randomly sampled
groups (g = 1, 2,..., G) and randomly sampled individuals within each
such group (i = 1, 2,..., N,). We may write the corresponding (total) co-
variance matrix as a sum of a between- and a within-group part,

2T=EB+2W~ (1)
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In a typical educational example, %y refers to student-level variation and
3. p refers to class-level or school-level variation. In line with Muthén and
Satorra (1995; see also Skinner, Holt, and Smith 1989) we will use the
term “aggregated modeling” when the usual sample covariance matrix S
is analyzed with respect to parameters of % rand “disaggregated modeling”
when the analysis refers to parameters of 2y and 3. In our terms, a multi-
level model is a disaggregated model for multilevel data. Such data can,
however, also be analyzed by an aggregated model—i.e., a model for the
total covariance matrix 2.

In terms of conventional maximum-likelihood covariance structure
analysis (e.g., see Bollen 1989) for estimating % parameters and drawing
inferences, multilevel data present complications of correlated observa-
tions due to cluster sampling. Special procedures are needed to properly
compute standard errors of estimates and chi-square tests of model fit.
Effects of ignoring the multilevel structure and using conventional proce-
dures for simple random sampling are illustrated in the next section in the
context of a latent variable model. The model is that of a conventional
analysis in that the usual set of latent variable parameters is involved.

In a disaggregated (or multilevel) model, the parameters them-
selves change from those of the conventional analysis. A much richer model
with both within and between parameters is used to describe both individual-
and group-level phenomena.

Itis of interest to compare 27 analysis and 2 analysis with respect
to the magnitude of estimates. This comparison has a strong practical fla-
vor because if the differences are small, the multilevel aspects of the data
can be ignored apart from perhaps small corrections of standard errors and
chi square. This is frequently the case. Even in such cases, however, there
may be information in the data that can be described in interesting ways by
parameters of 5. In other words, a frequent shortcoming when ignoring
the multilevel structure of the data is not what is misestimated but what is
not learned.

3. DESIGN EFFECTS

Drawing on Muthén and Satorra (1995), this section gives a brief overview
of effects of the cluster sampling in multilevel data on the standard errors
and test of model fit used in conventional covariance structure analysis
assuming simple random sampling.
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Consider the weil-known design effect (deff ) formula for the vari-
ance estimate of a mean with cluster size ¢ and intraclass correlation p,

VelVsgs =1+ (¢ — Dp, (2)

where V- is the (true) variance of the estimator under cluster sampling and
Vsrs 1s the corresponding (incorrect) variance assuming simple random
sampling (Cochran 1977). The intraclass correlation is defined as the
amount of between-group variation divided by the total amount of varia-
tion (between plus within). This formula points out that the common un-
derestimation of standard errors when incorrectly assuming SRS is due to
the combined effects of group size (¢) and intraclass correlations (p’s).
Given that educational data often have large group sizes in the range of
20-60, even a rather small intraclass correlation value of 0.10 can have
huge effects. However, it is not clear how much guidance, if any, this
formula gives in terms of multivariate analysis and the fitting of latent
variable models (see also Skinner, Holt, and Smith 1989). Muthén and
Satorra (1995) carried out a Monte Carlo study to shed some light on the
magnitude of these effects.

In our experience with survey data, common values for the intra-
class correlations range from 0.00 to 0.50 where the higher range values
have been observed for educational achievement test scores and the lower
range for attitudinal measurements and health-related measures. Both the
way the groups are formed and the content of the variables have major
effects on the intraclass correlations. Groups formed as geographical seg-
ments in alcohol use surveys indicated intraclass correlations in the range
of 0.02 to 0.07 for amount of drinking, alcohol dependence, and alcohol
abuse. Equally low values have been observed in educational surveys when
it comes to attitudinal variables related to career interests of students sam-
pled within schools. In contrast, mathematics achievement scores for U.S.
eighth graders show proportions of variance due to class components of
around 0.30-0.40 and due to school components of around 0.15-0.20.

Muthén and Satorra (1995) generated data according to a ten-variable
multilevel latent variable model with a two-factor simple structure. This is
a disaggregated model of the kind described above. In this case, the load-
ing matrices are equal across the two levels, which means that the same
covariance structure model holds on all three levels: within, between, and
total. Conventional analysis of the total matrix can then be studied in a case
where the model is correct, but standard errors and test of model fit are not.
Data were generated as 200 randomly generated groups and group sizes
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(total sample size) 7 (1400), 15 (3000), 30 (6000), and 60 (12000). These
are common values in educational achievement surveys. One thousand
replications were used.

Table 1 gives chi-square test statistics for a conventional analysis
incorrectly assuming simple random sampling. The model has 34 degrees
of freedom. Using the terms above, this is an analysis of an aggregated
model using the usual sample covariance matrix S7. The within and be-
tween parameters are not separately estimated; only the parameters of the
total matrix are. It is seen that an inflation in chi-square values is obtained
by increasing both group size and intraclass correlations, implying that
models would be unnecessarily rejected. Only for small values of the in-
traclass correlations and the group size might the distortion be ignorable—
for example, for the combinations (0.05, 7), (0.05, 15), and (0.10, 7).
Judging from this table it seems that even for a rather small intraclass

TABLE 1
Chi-Square Testing with Cluster Data
Group Size

Intraclass Correlation 7 15 30 60
0.05

Chi-square

Mean 35 36 38 41

Var 68 72 80 96

5%* 5.6 7.6 10.6 204

1% 1.4 1.6 2.8 7.7
0.10

Chi-square

Mean 36 40 46 58

Var 75 89 117 189

5% 8.5 16.0 37.6 73.6

1% 1.0 5.2 17.6 52.1
0.20

Chi-square

Mean 42 52 73 114

Var 100 152 302 734

5% 235 57.7 93.1 99.9

1% 8.6 35.0 83.1 99.4

“Percentage of replications where model was rejected at 5-percent level.



458 MUTHEN

correlation of 0.10, the distortions may be large if the group size exceeds
15. The standard errors of the estimates show an analogous pattern in terms
of deflated values. Muthén and Satorra (1995) go on to show how standard
errors and chi-square tests of fit can be corrected by taking the clustering
into account. They also show that the ML estimator of the disaggregated,
multilevel model performs well, but the estimator does have problems of
convergence at small intraclass correlation values and small group sizes
and is also sensitive to deviations from normality. In the normal case with
intraclass correlations of 0.10 and groups sizes ranging from 7 to 60, the
multilevel ML estimator also performs well when the number of groups is
reduced from 200 to 50. In our experience, when the number of groups is
much less than 50, this estimator does not give trustworthy results.

We conclude from these simulations that ignoring the multilevel
nature of the data and carrying out a conventional covariance structure
analysis may very well lead to serious distortions of conventional chi-
square tests of model fit and standard errors of estimates.

4. A TWO-LEVEL (DISAGGREGATED) MODEL

This section briefly reviews the theory for two-level modeling and esti-
mation. Specific latent variable models are not discussed here. The spe-
cific latent variable model used in growth mceling is given in the next
section, where it is shown how it fits into the framework given in the
present section.

In line with McDonald and Goldstein (1989) and Muthén (1989,
1990), suppose that there are G groups, of which group g has N, members
(g = 1,2,...,G). Let z, be a vector of length r containing the values of
group-level variables for group g and let u,; be a vector of length p con-
taining the values of individual-level variables for the i” individual in
group g. Arrange the data vector for which independent observations are
obtained as

d;{ = (Zé#u‘élﬁuéz"’~9u;1\[¥)s (3)

where we note that the length of d,, varies across groups. The mean vector
and covariance matrix are

2 symmetric
2"(1, = ' . (5)
< lN_u®2“f IN‘Q®2W + lNl,JlA{u®EB
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Here, the symbol @ denotes a Kronecker product defined as follows. For
an m X n matrix A and an s X r matrix B, A & B is the ms X nt matrix

a“B alnB
A®B=| :+ .. | (6)
A B NN amnB

2wand X g are p X p within-group and between-group covariance matrices
for the u variables. Muthén (1994a: 378-82) discusses the above covari-
ance structure and contrasts it with that of conventional covariance struc-
ture analysis.

The elements of w., w,, 2-., 2,-, 2y, and X are functions of the
parameters of the model. Assummg multivariate normality of d,, the ML
estimator minimizes the function

dg - /"L([Q)’EJ#I (du - /-L(/Q)} (7)

G
F = {log|z ’
g=1

with respect to the parameters of the model. Here, the sizes of the arrays
involving u variables are determined by the product N, X p, which is large
if there are many individuals per group. A remarkable fact is that the like-
lihood can be expressed in a form that reduces the sizes of the arrays in-
volving u variables to depend only on p (cf. McDonald and Goldstein
1989; Muthén 1989, 1990),

D
F=2 Gdn|Sg, | + tr[S5) (Sg, + Nyt — )ty — w))]}

d=1
+ (N = G){In|Sy| + tr[Ew' Spw ]} (8)
where

3 <N[,E:; symmetric )
Pe AN, Sy + NySg

Gy [-, _ 3
_ Kk Zd _ _ _
Ss, = NaGq' >, <- _ > [k = Za) (g — i14)" ],

k=1 \Uqk — Uy
2z/ - M
[tl - M= - )
Ug — My

G
Spw=(N—G)! Z

H M—?

- Ijlg)(l/lg,‘ - ljlg),.
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Here, D denotes the number of groups of a distinct size, d is an index
denoting a distinct group size category with group size N,, G, denotes the
number of groups of that size, S, denotes a between-group sample covari-
ance matrix, and Spy is the usual pooled-within sample covariance matrix.

Muthén (1989,1990) pointed out that the minimization of the ML
fitting function defined by equation (8) can be carried out by conventional
structural equation modeling software, apart from a slight modification
due to the possibility of singular sample covariance matrices for groups
with small G, values. A multiple-group analysis is carried out for D + 1
groups, the first D groups having sample size G, and the last group having
sample size N — G. Equality constraints are imposed across the groups for
the elements of the parameter arrays u, .., %,.., g, and X (see Muthén
1990 for details).

Muthén (1989, 1990) also suggested an ad hoc estimator that con-
sidered only two groups,

F'=G{n|Sg | + tr[S5" (Sp + c(t — w)(t — w)")]}

+ (N - G){ln|2w| + ﬂ'[zp‘vl Spw]}, (9)

where the definition of the terms simplifies relative to Equation (8) due to
ignoring the variation in group size, dropping the d subscript, and using
=1,G,= G,and N, = ¢, where c is the average group size (see Muthén
1990 for details). When data are balanced—i.e., when the group size is
constant for all groups—the ML estimator will be obtained. Experience
with the ad hoc estimator for covariance structure models with unbalanced
data indicates that the estimates, and also the standard errors and chi-
square test of model fit, are quite close to those obtained by the true ML
estimator. This observation has also been made for growth models where
a mean structure is added to the covariance structure, see Muthén (1994b).
In Section 6 we will return to the specifics of how the mean and
covariance structures of equations (8) and (9) can be represented in con-
ventional structural equation modeling software for the case of growth
modeling. The growth model will be presented next.

5. A THREE-LEVEL HIERARCHICAL MODEL

Random coefficient growth modeling (e.g., see Laird and Ware 1982), or
multilevel modeling (e.g., see Bock 1989), describes individual differ-
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ences in growth. In this way, it goes beyond conventional structural equa-

tion modeling of longitudinal data and its focus on autoregressive models

(e.g., see Joreskog and Sorbom 1977; Wheaton et al. 1977). Random-

coefficient modeling for three-level data has been described (e.g., see Gold-

stein [1987]; Bock [1989]; Bryk and Raudenbush [1992]) as follows.
Consider the three-level data

Group g=12,....G

(school, class)

Individual i=1,2,...,n

Time r=1,2,...,T

Veir : individual-level, outcome variable

Xir : individual-level, time-related variable (age, grade)
Woir : individual-level, time-varying covariate

Wi : individual-level, time-invariant covariate

Zg : group-level variable

and the growth equation,
Veir = Qg + Bgixir + VeirWeoir T ggit' (10)

An important special case that will be the focus of this paper is where the
time-related variable x; = x,. This means that for the t” occasion, all in-
dividuals have the same x, value. An example of this is educational achieve-
ment studies where ¢ corresponds to grade. The x, values are, for example,
0,1,2,...,T — 1 for linear growth. We will also restrict attention to the case
of y,4i; = 7,. Both restrictions are necessary in order to fit the model into
currently available software and estimation techniques for the latent vari-
able framework to be discussed in the next section.
The three levels of the growth model are then

ygir = agi + xngi + YIngt + ggih (l 1)

{agf = ag’ + 7Tan,' + 60,“

(12)
Bgi = By + TRWgi + 5.30;’
{ag = a+t Kazg t 8,
‘ (13)
B.&’ = B + KﬁZA’ + Sﬁ‘c'

In the case of growth modeling using a simple random sample of
individuals, it is possible to translate the growth model from a two-level
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model to a one-level model by considering a 7 X 1 vector of outcome
variables y for each individual. Analogously, we may reduce the three-
level model to two levels. For example, in a model without covariates and
group-level variables,

Yeil

_ ) ~ [1x] (a.ei> +
Yei = : =Lx ﬁgi gﬁ:i’

(14)

YeiT

which may be expressed as the sum of a between- and a within-group
component,

Yoi = Ve t Veir (15)
where
. A N
ye = [1x] 3 + 4, (16)
g
and
5(1 41 .
vi = [1x] (6;) + e (17)
81

where {,; is the sum of the two uncorrelated components { < and {,;. Equa-
tions (16) and (17) will be further discussed from a latent variable per-
spective in the next section.

6. LATENT VARIABLE FORMULATION

For the case of simple random sampling of individuals, Meredith and Ti-
sak (1984, 1990) have shown that the random coefficient model of the
previous section can be formulated as a latent variable model (for appli-
cations in psychology, see McArdle and Epstein [1987]; for applications in
education, see Muthén [1993] and Willett and Sayer [1993]; for applica-
tions in mental health, see Muthén [1983, 1991]). The latent variable for-
mulation can be directly extended to the three-level data case. The basic
idea can be simply described as follows. In the example of equation (16),
a, and B, are latent variables varying across individuals and the coeffi-
cient matrix [ 1x] corresponds to a factor analysis loading matrix relating
the response variables to the latent variables. In equation (17) the corre-
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sponding latent variables are ,,, and &g, whereas the loading matrix is
the same. We find that

E(yy) = E(y;) + E(yg) = [1x] (;) + 0, (18)
V(ye) = V(yg) + V(yg) = 25 + 2w, (19)
Oa
Sp = [1x]V< g) [1x]" + V({,), (20)
55;:
Bagi
Sw = [IX]V< ) [1x]" + V(Zg), (2D
Spgi

so that the parameters of this latent variable model are «, B, and the ele-
ments of the covariance matrices in equations (20) and (21). This example
fits into the framework of Section 4 by noting that here

u=y, (22)

where y is the T X 1 vector of equation (14).

Muthén (1989, 1990) showed how the multilevel fitting functions F
and F' of equations (8) and (9) could be implemented in existing structural
equation modeling software using multiple-group analysis. Equation (8)
shows that there are D such groups that involve between-level parameters
and one group that involves within-level parameters. We will focus on how
to implement the D mean and covariance structures of equation (8) for the
example we are considering, where the mean structure appears in the
expression

Na(tg = p)(ta — )" = Ny(itg — o) (itg — ), (23)
and the covariance structure in the expression

23(, = zw + NdEB- (24)

Figure 1 shows a path diagram that is useful in describing this mean and
covariance structure. The figure again corresponds to the case of no co-
variates w, or group-level variables z. Here, T = 3. Figure 1 shows the
implementation of the model structure in the example of equations (18)—
(21). The top part of the figure introduces the mean structure and the
between-level covariance structure of the model by using the latent vari-
ables y, of equation (16) premultiplied by the square root of N, to match
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Between
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FIGURE 1. Latent variable growth model formulation for two-level, three-wave
data.

equations (23) and (24). The bottom part of the figure introduces the within-
level covariance structure. On the within side, we note that in our example,
the 8,,, factor influences the y’s with coefficients I at all time points. The
influence of the 6z, factor on the y variables is captured by the constants of
x,. This makes it clear that nonlinear growth can be accommodated by
estimating the x, coefficients—e.g., holding the first two values fixed at O
and 1, respectively, for identification purposes. The between-level a, and
B, factors influence the between-level y, variables with the same coeffi-
cients as on the within side; the factor loading matrices are the same and
only the factor and residual covariance matrices differ. A strength of the
latent variable approach is that this loading matrix equality assumption
can easily be relaxed. For example, it may not be necessary to include
between-group variation in the growth rate so that the between-level vari-
ation is represented by only one factor.
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A special feature of the growth model is the mean structure imposed
on u in the ML fitting function of equation (8), where u represents the
means of group- and individual-level variables. In the specific growth model
shown in Figure 1, the mean structure arises from the three observed y
variable means being expressed as functions of the means of the @, and 8,
factors. Equation (8) indicates that the means need to be included on the
between side of Figure 1, while the means on the within side are fixed at
zero. This implies that dummy zero means are entered for the within
group. The number of degrees of freedom for the chi-square test of model
fit obtained in conventional software then needs to be reduced by the num-
ber of individual-level variables.

The latent between-level variables may also be related to observed
between-level variables z, as in Section 4 and Section 5. Furthermore, it is
straightforward to add individual-level covariates such as the w variables
in equations (10)—(13), defining

’

u' =y

Tow'), (25)
where w is a vector of all time-invariant and time-varying covariates. While
z only contributes between-group variability, u contributes both between-
group and within-group variability, as seen in equation (6).

The model in Figure 1 can also be generalized to applications with
multiple indicators of latent variable constructs instead of single outcome
measurements y at each time point. The covariates may also be latent vari-
ables with multiple indicators. Furthermore, estimates may be obtained for
the individual growth curves by estimating the individual values of the
intercept and slope factors « and B. This relates to empirical Bayes esti-
mation in the conventional growth literature (e.g., see Bock 1989).

The determination of model identifiability can draw on regular latent
variable modeling rules by observing in equation (8) that it is sufficient
that the individual-level parameters can be identified from the within-
group covariance matrix and that the group-level parameters (and the
means) can be identified from the between-group covariance matrix (and
the means).

Further details and references on latent variable modeling with two-
level data are given in Muthén (1994a), where suggestions for analysis
strategies are also given. Software for calculating the necessary sample
statistics, including intraclass correlations, is available from Statlib at http:
//1ib.stat.cmu.edu/general/latent.2level or by sending the E-mail message
“send latent.2level from general” to statlib@stat.cmu.edu.
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7. ANALYSIS OF TWO-WAVE ACHIEVEMENT DATA

We will first consider data from the Second International Mathematics
Study (SIMS) drawing on analyses presented in Muthén (1991b, 1992).
Here, a national probability sample of school districts was selected pro-
portional to size; a probability sample of schools was selected propor-
tional to size within school district, and two classes were randomly drawn
within each school. The data consist of 3724 students observed in 197
classes from 113 schools; the class sizes varied from 2 to 38, with a typical
value of around 20. Eight variables are considered corresponding to vari-
ous areas of eighth-grade mathematics. The same set of items was admin-
istered as a pretest in the fall of eighth grade and again as a posttest in the
spring.
Muthén (1991b: 341) poses the following questions:

The substantive questions of interest in this article are the
variance decomposition of the subscores with respect to
within-class student variation and between-class varia-
tion and the change of this decomposition from pretest to
posttest. In the SIMS . .. such variance decomposition
relates to the effects of tracking and differential curricula
in eighth-grade math. On the one hand, one may hypoth-
esize that effects of selection and instruction tend to in-
crease between-class variation relative to within-class
variation, assuming that the classes are homogeneous,
have different performance levels to begin with, and show
faster growth for higher initial performance level. On the
other hand, one may hypothesize that eighth-grade expo-
sure to new topics will increase individual differences
among students within each class so that posttest within-
class variation will be sizable relative to posttest between-
class variation.

7.1. Measurement Error and Reliability of Multiple Indicators

Analyses addressing the above questions can be done for overall math
performance, but it is also of interest to study if the differences vary from
more basic to more advanced math topics. For example, one may ask if the
differences are more marked for more advanced topics. When focusing on



MODELING OF LONGITUDINAL AND MULTILEVEL DATA 467

specific subsets of math topics, the resulting variables consist of a sum of
rather few items and therefore contain large amounts of measurement er-
ror. At grade eight, the math knowledge is not extensively differentiated
and a unidimensional latent variable model may be formulated to estimate
the reliabilities for a set of such variables. Muthén (1991b) formulated a
multilevel factor analysis model for the two-wave data. Given that the
amount of across-school variation was small relative to the across-classroom
variation, the school distinction was ignored and the data analyzed as a
two-level structure. At each time point, unidimensionality was specified
for both within- and between-class variation, letting factors and measure-
ment errors correlate across time on each level. Table 2 presents estimates
from both the multilevel factor analysis (MFA) model (see the within and
between columns) and a conventional analysis (see the total columns).
Reliability is estimated from the factor model as the proportion of variance
in the indicator accounted for by the factor. As is seen from Table 2, the
estimated student-level (within) reliabilities are considerably lower than
reliabilities obtained from a total analysis.

In psychometrics it is well-known that reliabilities are lower in more
homogeneous groups (Lord and Novick 1968). Here, however, it seems
important to make the distinction shown in Figure 2.

Figure 2 (a) corresponds directly to the Lord and Novick case. The
three line segments may be seen as representing three different classrooms

TABLE 2
The Second International Mathematics Study:
Reliabilities of Math Achievement at Two Time Points

Pretest Posttest
MFA MFA

Number _ _
Variables of Items Total Within Between Total Within Between
RPP 8 .61 44 .96 .68 .52 97
FRACT 8 .60 .38 .97 .68 .49 98
EQ EXP 6 .36 .18 .83 .55 32 .92
INTNUM 2 .34 .18 .81 43 25 .88
STESTI 5 44 25 .86 52 .34 .89
AREAVOL 2 .29 18 .82 .38 23 .84
COORVIS 3 .34 .18 .92 42 .26 .80
PFIGURE 5 32 17 .78 46 31 77
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FIGURE 2. Regression of an indicator on its latent variable.

with different student factor values i and student test score values y. The
regression line for all classrooms is given as a broken line. All classrooms
have the same intercept and slope. For any given classroom, the range of
the factor is restricted and due to this restriction in range the reliability is
attenuated relative to that of all classrooms.

Figure 2 (b) probably corresponds more closely to the situation at
hand. Here, the three classrooms have the same slopes but different inter-
cepts. The regression for the total analysis is marked as a broken line. It
gives a steeper slope and a higher reliability than for any of the classrooms.
One can argue, however, that the higher reliability is incorrectly obtained
by analyzing a set of heterogeneous subpopulations as if they were one
single population (cf. Muthén 1989). In contrast, the multilevel model
captures the varying intercepts feature and reveals the lower within-
classroom reliability that holds for each classroom.
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The Table 2 between-classroom reliabilities are considerably higher
than the within-classroom values. These between coefficients concern re-
liable variation across classrooms and therefore have another interpreta-
tion than the student-level reliabilities. The results indicate that what
distinguishes classrooms with respect to math performance is largely ex-
plained by a single dimension—i.e., a total score—and that on the whole
the topics measure this dimension rather similarly.

7.2. Attenuation of Intraclass Correlations by Measurement Error

We will consider the size of the intraclass correlations as indicators of
school heterogeneity. This can be seen as a function of social stratification
giving across-school differences in student “intake,” as well as differences
in the teaching and what schools do with a varied student intake. The U.S.
math curriculum in grades 7-10 is very varied with large differences in
emphasis on more basic topics such as arithmetic and more advanced top-
ics such as geometry and algebra. Ability groupings (“tracking”) is often
used. In some other countries, however, a more egalitarian teaching ap-
proach is taken, the curriculum is more homogeneous, and the social strat-
ification less strong. In international studies the relative sizes of variance
components for student, class, and school are used to describe such differ-
ences (e.g., see Schmidt, Wolfe, and Kifer 1993).

Table 3 gives conventional variance component results from nested,
random-effects ANOVA in the form of the proportion of variance between
classrooms relative to the total variance. This is the same as the intraclass
correlation measure. It is seen that the intraclass correlations increase from
pretest to posttest. The problem with these values is, however, that they are
likely to be attenuated by the influence of measurement error. This is be-
cause student-level measurement error adds to the within-part of the total
variance—i.e., the denominator of the intraclass correlation. The distor-
tion is made worse by the fact that the student-level measurement error is
likely to decrease from pretest to posttest due to more familiarity with the
topics tested.

The MFA columns of Table 3 give the multilevel factor analysis
assessment of intraclass correlations using the one-factor model in the
previous subsection. Here, the intraclass correlations are computed using
the between and within variances for the factor variable, not including
measurement error variance. It is seen that these intraclass correlations are
considerably higher and indicate a slight decrease over time. This is a
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TABLE 3
The Second International Mathematics Study:
Intraclass Correlations ( proportion between classroom
variance) of Math Achievement at Two Time Points

ANOVA MFA
Number
Variables of Items Pretest Posttest Pretest Posttest
RPP 8 34 .38 54 .52
FRACT 8 .38 41 .60 .58
EQ EXP 6 .27 .39 .65 .64
INTNUM 2 .29 3l .63 .61
STESTI 5 33 34 .58 .56
AREAVOL 2 A7 24 54 52
COORVIS 3 21 32 .57 .55
PFIGURE 5 23 33 .60 .54

change in the opposite direction from the ANOVA results. Results from
ANOVA would therefore give misleading evidence for answering the ques-
tions posed in Muthén (1991b).

8. ANALYSIS OF FOUR-WAVE DATA
BY GROWTH MODELING

The Longitudinal Study of American Youth (LSAY) is a national study of
performance in and attitudes toward science and mathematics. It is con-
ducted as a longitudinal survey of two cohorts spanning grades 7 to 12.
LSAY uses a national probability sample of about 50 public schools, test-
ing an average of about 50 students per school every fall starting in 1987.
Data from four time points, grades 7-10, and one cohort will be used to
illustrate the methodology for analysis of individual differences in growth.

In this analysis, mathematics achievement and attitudes toward math
will be related to each other and to the socioeconomic status of the family.
The data to be analyzed consists of a total sample of 1869 students in 50
schools with complete data on all variables in the analysis. Mathematics
achievement is quantified as a latent variable (theta) score obtained by IRT
techniques using multiple test forms and a large number of items including
arithmetic, geometry, and algebra. The intraclass correlations for the math
achievement variable for the four grades are estimated as 0.18, 0.13,0.15,



MODELING OF LONGITUDINAL AND MULTILEVEL DATA 471

0.14, indicating a noteworthy degree of across-school variation in achieve-
ment. Attitude toward math was measured by a summed score using items
having to do with how hard the student finds math, whether math makes
the student anxious, whether the student finds math important, etc. As
expected, the intraclass correlations for the attitude variable are consider-
ably lower than for achievement. They are estimated as 0.05, 0.06, 0.04,
and 0.02. The Pearson product-moment correlations between achievement
and attitude are estimated as 0.4-0.6 for each of the four time points. The
measure of socioeconomic status pertains to parents’ educational levels,
occupational status, and the report of some resources in the home. It has an
intraclass correlation of 0.17.

For simplicity in the analyses to be presented, the two-group ad hoc
estimator discussed in Section 4 will be used, not the full-information
maximum-likelihood estimator. This means that the standard errors and
chi-square tests of model fit are not exact but are approximations; given
our experience, they are presumably quite reasonable ones. Nevertheless,
statements about significance and model fit should not be interpreted in
exact terms.

8.1. Two-Level Modeling

In this section, two-level modeling of the LSAY data will be outlined, both
in terms of the growth model and, as a contrast, in terms of a conven-
tional autoregressive model. The primary analysis considers a growth model
that extends the single-variable, two-level growth model of Figure 1 to a
simultaneous model of the growth process for both achievement and atti-
tude. SES will be used as a student-level, time-invariant covariate, explain-
ing part of the variation in these two growth processes. No observed
variables on the school level will be used in this case, but school-level
variables can be easily incorporated in the general model. The model is
described graphically in Figure 3.

Let the top row of observed variables (squares) represent achieve-
ment at each of the four time points and the bottom row the corresponding
attitudes. The SES covariate is the observed variable to the left in the
figure.

Consider first the student- (within-)level part of Figure 3. The latent
variable (circle) to the right of the observed variable of SES is hypoth-
esized to influence four latent variables, the intercept (initial status) factor
and slope (growth rate) factor for achievement (the top two latent vari-
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FIGURE 3. Two-level, four-wave growth model for achievement and attitude related
to socioeconomic status.

ables) and the intercept and slope factors for attitude (the bottom two latent
variables). The intercept for each growth process is hypothesized to have
a positive influence on the slope of the other growth process. In order not
to clutter the picture, residuals and their correlations are not drawn in the
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figure, but aresidual correlation is included for the intercepts as well as the
slopes. For each growth process, the model is as discussed in connection
with Figure 1. Preliminary analyses suggest that nonlinear growth for
achievement should be allowed for by estimating the growth steps from
grade 8 to 9 and from grade 9 to 10, while for attitude a linear process is
sufficient. In fact, for attitude, a slight decline is observed over time.
The reason for this is not clear, but does perhaps reflect that among a
sizable part of the student population there is an initial positive attitude
about math that wears off over the grades either because math gets harder
or because they stop taking math. For each growth process, correlations
are allowed for among residuals at adjacent time points. Residual corre-
lations are also allowed for across processes at each time point. Cross-
lagged effects between the outcome variables are allowed for but not
shown in the figure. It should be noted that even without cross-lagged
effects the model postulates that achievement and attitude do influence
each other via their growth intercepts and slopes. For example, if the
initial status factor for attitude has a positive influence on the growth
rate factor for achievement, initial attitude has a positive influence on
later achievement scores.

The hierarchical nature of the data is taken into account by inclu-
sion of the between- (school-)level part of the model. The between-level
part of Figure 3 is similar to the within-level part. Starting with the SES
variable to the left in the figure, it is seen that the variation in this variable
is decomposed into two latent variables, one for the within variation and
one for the between variation (the between factor is to the left of the SES
square). At the top and the bottom of the figure are given the between-level
intercept and slope factors for achievement and attitude, respectively. As
in Figure 1, the influence of these factors on achievement/attitude is spec-
ified to have the same structure and parameter values as for the within part
of the model. A minor difference here is that the intercept for one process
is not specified to influence the slope of the other process, but all four
intercept and slope factor residuals are instead allowed to be freely corre-
lated. Also, on the between side, correlations among adjacent residuals
over time are not included in the model.

As a comparison to the above growth model, a more conventional
autoregressive, cross-lagged model will also be analyzed. This is shown in
Figure 4 in its two-level form. On the within level, the figure shows a
lag-one autoregressive process for both achievement and attitude with lag-
one cross-lagged effects, where SES is allowed to influence the outcomes
at each time point. The between-level part of the model is here not given a
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FIGURE 4. Two-level, four-wave autoregressive model for achievement and attitude
related to socioeconomic status.

specific structure but the between-level covariance matrix is made un-
restricted by allowing all between-level factors to freely correlate.

8.2. Analyses

The results of the model testing are summarized in Table 4. This table
also includes BIC values for evaluating model fit, comparing the model in
question against the unrestricted model (see Raftery 1993, 1995). It is of
interest to first ignore the hierarchical nature of the data and to give the
incorrect tests of fit for the single-level analogs of the autoregressive and
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TABLE 4
Model Testing for LSAY Data (n = 1,869)

Autoregressive Model

Model Chi-square Degrees of Freedom BIC

Ignoring the two-level
structure (chi-square
values incorrect)

Model 1: Lag-one 534.7 12 418

Model 2: Lag-three 223 6 -36
Two-level analysis

Model 3: Lag-one 518.8 12 402

Model 4: Lag-three 28.1 6 =30

Growth Model

Ignoring the two-level
structure (chi-square
value incorrect)

Model 5: Growth model 44.0 8 —34
Two-level analysis
Model 6: Growth model 68.4 30 —152

growth models. To this aim, the conventional maximum-likelihood fitting
function is used. The lag-one autoregressive model did not fit well at all.
To improve fit it was necessary to include a lag-three model for the auto-
regressive part. The correct two-level tests of fit using the lag-one model
of Figure 4 resulted in a clear rejection of the model, while a two-level,
lag-three model gave a reasonable fit. The BIC values agree with this con-
clusion. The degrees of freedom are the same for the single-level and two-
level models because the two-level model doubles the number of parameters
as well as the number of sample variances and covariances that are ana-
lyzed (a mean structure is not involved in this model). The two-level, lag-
three model shows positive and significant student-level cross-lagged
effects of achievement and attitude on each other. The lag-three autoregres-
sive structure of the model, however, makes it a rather complex and inele-
gant representation of the data.

Turning to the growth model, Table 4 gives test results for the single-
level model, which ignores the hierarchical nature of the data, and for the
two-level model. As indicated by its BIC value, the two-level growth model
is clearly preferred over the unrestricted model as well as the other models
in Table 4. The estimates of this model are shown in Table 5. What is
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particularly interesting about the two-level growth model is that in con-
trast to the autoregressive model, none of the student-level cross-lagged
effects are significantly different from zero. This makes for a very parsi-
monious model where the achievement and attitude processes are instead
correlated via the correlations among their intercept and slope factors. The
correlation between the intercept factors (not shown in the table) is posi-
tive (0.27) while the slope factor correlation is ignorable (0.08). The in-
fluences from the intercepts to the slopes turn out to be not significant.

The student-level influence from SES is significantly positive for
both the achievement and attitude intercepts. It is insignificant for the
achievement slope and significantly negative for the attitude slope. It is not
clear what the negative effect represents, but this effect would be seen if
students from high SES homes have a strong initial positive attitude that
later becomes less positive. SES explains 12 percent of the student varia-
tion in the achievement intercept while it explains only 1 percent of the
student variation in the attitude intercept. In terms of the achievement
growth, the estimates indicate that relative to the positive growth from
grade 7 to 8, the growth is accelerated in later grades. For attitude, linear
growth is maintained.

In the school-level part of the model, the correlation between achieve-
ment and attitude intercepts (not shown in the table) obtains a rather high
value, 0.61 (the student-level value is 0.27). On the school level it is seen
that SES does not have a significant influence on the attitude intercept or
slope factors. The influence on the achievement intercept and slope is, how-
ever, significantly positive. This reflects across-school heterogeneity in
neighborhood resources so that schools with higher SES families have both
higher initial achievement and stronger growth over grades. It is interesting
to note that significant student-level influence of SES on the student-level
achievement growth rate was not seen, while strongly significant school-
level influence of SES is seen on the school-level achievement growth rate.
This is an example of a difference in between-school and within-school
model structure. The latent variable approach readily accommodates such
model features.

9. CONCLUSIONS

This paper has presented a general model for latent variable growth anal-
ysis that takes into account cluster sampling. The model is of interest from
two methodological perspectives. First, it represents a multilevel latent vari-
able model that has not only a covariance structure but also a mean struc-
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ture. Second, it represents a new latent growth model that has two levels.
The latent variable formulation combines these two perspectives and makes
for a very general modeling framework. The model has the advantage that
it can be analyzed with existing structural equation modeling software.

It is clear from the real data analyses that much can be gained in
terms of understanding the data if the multilevel analysis is used not only
to compute correct standard errors and chi-square tests of model fit with
nonindependent observations but also to interpret the parameters that cap-
ture the nonindependence of the observations. The examples showed that
different interpretations were obtained for parameters on the between-
group level than on the within-group level.

The complexity of the models calls for sound modeling strategies,
but these are difficult to formulate in general. Muthén (1994a) discusses
latent variable modeling steps that are relevant for two-level data. The
examples in the present paper illustrate the wide applicability of the new
methodology. It is clear, however, that many other special types of multi-
level growth models can be formulated and it will be interesting to have
researchers from many fields explore these new possibilities. Further meth-
odological research is also needed, such as regarding restricted maximum-
likelihood estimation (REML) and robustness of inference in situations
with small sample sizes and data that deviate from normality.
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