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Sources of population heterogeneity may or may not be observed. If the sources of hetero-
geneity are observed (e.g., gender), the sample can be split into groups and the data analyzed
with methods for multiple groups. If the sources of population heterogeneity are unobserved,
the data can be analyzed with latent class models. Factor mixture models are a combination
of latent class and common factor models and can be used to explore unobserved population
heterogeneity. Observed sources of heterogeneity can be included as covariates. The different
ways to incorporate covariates correspond to different conceptual interpretations. These are
discussed in detail. Characteristics of factor mixture modeling are described in comparison to
other methods designed for data stemming from heterogeneous populations. A step-by-step
analysis of a subset of data from the Longitudinal Survey of American Youth illustrates how
factor mixture models can be applied in an exploratory fashion to data collected at a single
time point.

The populations investigated in the behavioral sciences
and related fields of research are often heterogeneous. A
sample may consist of explicitly defined groups such as
experimental and control groups, and the aim is to compare
these groups. On the other hand, the sources of population
heterogeneity may not be known beforehand. Test scores on
a cognitive test may reflect two types of children in the
sample: those who master the knowledge required to solve
the items (masters) and those who lack this critical knowl-
edge (nonmasters). The interest may be to decide to which
of the subpopulations a given child most likely belongs. In
addition, it may be of interest to characterize masters and
nonmasters using background variables to develop specific

preparatory courses. Psychopathology is another area in
which unobserved population heterogeneity occurs. A dis-
order may consist of qualitatively different subtypes, and
the interest may be to identify the subpopulations in order to
develop subtype specific treatments or to find subtype spe-
cific genes. Meehl (1992) presents an extensive discussion
of the type concept in psychology.

Subpopulation is a generic term indicating a cluster
within a heterogeneous population. Population heterogene-
ity can be observed or unobserved. Heterogeneity is ob-
served if it is possible to define the subpopulations based on
an observed variable. For instance, it is known that gender
often introduces heterogeneity in math achievement tests,
and one can define two subpopulations (i.e., males and
females) based on the observed variable gender. In the
context of observed heterogeneity, subpopulations are
called groups, and group membership is known for each
participant. The data can be analyzed using models for
multiple groups. Multiple-group analyses are appropriate if
the interest is to compare explicitly defined groups such as
gender groups, age groups, or experimental–control groups.
Unobserved heterogeneity differs from the multiple-group
situation. Here, the variables that cause the heterogeneity in
the data are not known beforehand. Consequently, it is also
not known to which of the subpopulations a participant
belongs, and it is not possible to divide the sample into
groups. The subpopulation membership of the participants
has to be inferred from the data. In the context of unob-
served heterogeneity, the subpopulations are called latent
classes because subpopulation membership is not observed
but latent. In this article, we use the term subpopulation in
the context in which heterogeneity may or may not be
observed. We reserve the term group in the context of
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observed heterogeneity (i.e., gender defines two groups).
Finally, we use the term latent classes to specifically ad-
dress unobserved heterogeneity.

Different methods have been developed for the analysis
of unobserved heterogeneity. Taxometric methods address
the question of whether participants differ in degree with
respect to an observed behavior or whether they belong to
either of two qualitatively different types (Meehl, 1992;
Waller & Meehl, 1998). The two types correspond to two
latent classes. The taxometric approach does not offer the
possibility of specifying models for observed data within
each of the two latent classes. Classic latent class analysis
allows for more than two latent classes but is also limited
with respect to modeling observed variables within class.
Factor mixture modeling is flexible with respect both to the
number of latent classes and to modeling the observed
variables within class.

The aim of the current article is to describe factor mixture
models as a tool to explore unobserved population hetero-
geneity. Factor mixture models are a combination of the
common factor model (Thurstone, 1947) and the classic
latent class model (Lazarsfeld & Henry, 1968). The com-
mon factor model and the latent class model are latent
variable models. Latent variables serve to model theoretical
concepts or phenomena that are not directly observable.
Observed variables that contain information about the the-
oretical concepts are used as indicators for the latent vari-
ables. There are important differences between the latent
variables in the common factor model and the latent class
model (for a historic overview, see Bartholomew, 1987;
Heinen, 1996; Langenheine & Rost, 1988). In the context of
the current study, the most important difference concerns
the specific purpose of the latent variables in the common
factor model compared with the latent class model. The
common factor model is appropriate for data from a single
homogeneous population. The common factor model is
designed to investigate the common content of observed
scores such as questionnaire items. Continuous latent vari-
ables called factors are used to model the common content
of the observed variables. Participants are assumed to differ
in degree with respect to the factors, and these differences
produce the covariances of the observed items. The covari-
ances are modeled by specifying regression relations be-
tween the observed items and the underlying continuous
factors. Factor models serve to cluster items.

Latent class models, on the other hand, serve to cluster
participants. This type of model is adequate if the sample
consists of different subtypes and it is not known before-
hand which participant belongs to which of the subtypes.
The subtypes may differ qualitatively (e.g., qualitatively
different subtypes of a psychiatric disorder) or quantita-
tively (e.g., a high- and a low-scoring class in an educational
study). The latent variable in the latent class model is
categorical, and the number of categories (i.e., number of

latent classes) represents the number of different clusters of
participants in a sample. In other words, the latent categor-
ical variable is used to model heterogeneity. In the classic
form of the latent class model, observed variables within
each latent class are assumed to be independent. Although
in variations of the classic model this assumption is relaxed
(see, for instance, Uebersax, 1999; Vermunt & Magidson,
2000; Vermunt & Magidson, 2002) no specific structure for
the covariances of observed variables is specified.

The factor mixture model combines the latent class model
and the common factor model and has a single categorical
and one or more continuous latent variables. As in the latent
class model, the categorical latent variable serves to model
the unknown population heterogeneity. Different than in the
latent class model, observed variables within class are not
assumed to be independent, but a common factor model is
specified to impose a structure on the covariance matrix and
mean vector of the observed variables within class. In other
words, observed variables within class are allowed to co-
vary, and the covariation is modeled using underlying con-
tinuous factors.

In this article, special attention is devoted to different
possibilities of integrating covariates in an investigation of
unobserved population heterogeneity. Covariates can be
used if some sources of heterogeneity are observed. If boys
and girls differ with respect to their performance on a math
test, then gender explains at least some of the heterogeneity
in the data. The heterogeneity induced by gender can take
several different forms. Gender may predict class member-
ship (i.e., being a master vs. a nonmaster), the math factor
score (i.e., mean differences in math within class), scores on
one or more of the individual math items (i.e., absence of
measurement invariance with respect to gender), or a com-
bination of these. We show how these different options can
be modeled and discuss their distinct interpretations.

Within this article, we first highlight characteristics of
factor mixture models in comparison to other commonly
used methods for data from heterogeneous populations.
Next, the general factor mixture model is presented, and
integration of covariates is described in detail. A step-by-
step factor mixture analysis of empirical data illustrates how
factor mixture models may be used to explore population
heterogeneity.

Characteristics of Factor Mixture Models in
Comparison to Other Methods for

Heterogeneous Data

Different methods for the analysis of data from heteroge-
neous populations have been designed to address specific
types of research questions. The following overview shows
in which situation a given method is suitable and highlights
the flexibility of factor mixture models in comparison to
more traditional methods. A number of criteria can be used
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to categorize methods for the analysis of data from hetero-
geneous populations. Here we focus on three important
criteria, namely (a) whether population heterogeneity is
observed or unobserved (i.e., multiple group vs. latent class
methods), (b) whether observed variables within a subpopu-
lation are assumed to be categorical, continuous, or both,
and (c) whether the method is a latent variable approach. In
a latent variable approach, observed scores are decomposed
into a part that is due to the latent variable and a part that is
the residual. Measurement error in the observed score is
contained in the residual. The overview is summarized in
Table 1.

Regarding the first criterion, well-known methods for
observed group membership are discriminant analysis
(DA), logistic (or ordered polytomous) regression (LR),
multivariate analysis of variance (MANOVA), and multi-
group common factor analysis (MG-CFA; Jöreskog, 1971;
Stevens, 1992). MG-CFA is an extension of the common
factor model to accommodate multiple groups. The groups
in LR, MANOVA, and MG-CFA are defined using a single
observed variable such as gender or a combination of sev-
eral observed variables (e.g., different combinations of gen-
der and highest educational degree). DA and LR are used if
the interest is to identify variables that strongly predict
group membership. MANOVA serves mean comparisons of
groups with respect to a set of observed variables. MG-CFA
is designed for group comparisons with respect to the means
and covariances of a set of observed variables. MG-CFA
encompasses MANOVA as a submodel.

Methods for observed group membership presuppose that
each participant can be uniquely assigned to a single group
based on one or more grouping variables. An example
would be a group that consists entirely of males or a group
that consists entirely of males with a college degree, de-
pending on the definition of the grouping variable. Methods
for unobserved heterogeneity are more flexible in that latent
classes can consist predominantly of males, and the calcu-
lation of the proportion of males within a latent class is a
result of the model estimation. Methods that do not require

heterogeneity to be observed are K-means clustering, latent
class analysis (LCA), latent profile analysis (LPA), and
factor mixture models (FMM; Arminger, Stein, & Witten-
berg, 1999; Dolan & van der Maas, 1998; Jedidi, Jagpal, &
DeSarbo, 1997a; Lazarsfeld & Henry, 1968; McLachlan &
Peel, 2000; B. O. Muthén & Shedden, 1999; Vermunt &
Magidson, 2002; Yung, 1997). These methods are designed
to detect in a given data set clusters of participants with
similar response patterns on a set of observed variables. The
number of clusters or latent classes has to be prespecified.
Clustering using the K-means method is achieved based on
an arbitrarily chosen criterion, which aims at minimizing
within-cluster variability while maximizing between-cluster
variability. LCA, LPA, and FMM, on the other hand, are
model based (see Magidson & Vermunt, 2002, for a com-
parison of LCA methods to K-means clustering). Model-
based methods have the advantage that more rigorous meth-
ods can be applied for the comparison of alternative models
(Vermunt & Magidson, 2002).

Second, the methods differ with respect to the assump-
tions concerning the distribution of the observed outcome
variables within a subpopulation. Some methods are de-
signed specifically for categorical or continuous variables,
whereas others can handle different types of variables. DA,
MANOVA, K-means, and LPA are methods for continuous
outcome variables, whereas the classic LCA and LR are
methods for categorical outcome variables. MG-CFA and
factor mixture models can handle both categorical and con-
tinuous variables in the same analysis.

Third, an observed score can be decomposed into a score
on an underlying latent variable and a residual containing
measurement error. Only LPA, LCA, MG-CFA, and factor
mixture models are latent variable models. Latent variables
can be categorical or continuous. The classic LPA and LCA
models have a single categorical latent variable, whereas
MG-CFA has a single or several continuous latent variables.
Factor mixture models are the only models with both a
single categorical and a single or multiple continuous latent
variables. Categorical and continuous latent variables serve

Table 1
Classification of Commonly Used Methods for Heterogeneous Populations

Method
Source of

heterogeneity Outcome variables
Latent

variable model

Discriminant analysis Observed Continuous No
Logistic regression Observed Categorical No
MANOVA Observed Continuous No
Multigroup CFA Observed Continuous and/or categorical Yes
K-means clustering Unobserved Continuous No
Latent class analysis Unobserved Categorical Yes
Latent profile analysis Unobserved Continuous Yes
Factor mixture modeling Unobserved Continuous and/or categorical Yes

Note. MANOVA � multivariate analysis of variance; CFA � common factor analysis.
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different goals and also differ with respect to their interpre-
tation on a conceptual level. The single categorical latent
variable in LPA, LCA, and factor mixture models serves to
model class membership (Lazarsfeld & Henry, 1968). Mod-
els with a latent class variable are appropriate to analyze
data from heterogeneous populations. The number of latent
classes corresponds to the number of clusters of participants
in the sample. In the classic LCA and LPA, all covariation
between observed variables is modeled to be due to differ-
ences between classes. Within class, observed variables do
not covary. This is called the assumption of local indepen-
dence. The variances of the observed variables within class
are residual variances. The common factor model, which is
an important building block of MG-CFA and factor mixture
models, has a single or multiple continuous latent variables
called factors. The factors serve to capture the common
content of the observed variables rather than to model
clusters of participants. Observed variables in the common
factor model are separated into factor scores and a residual
that contains specific factors and measurement error. Factor
models are appropriate, for instance, for data from ques-
tionnaire items, which are designed to measure an underly-
ing continuous construct and are likely to contain measure-
ment error. Because factor mixture models incorporate
categorical and continuous latent variables, they may be
used for the analysis of data with underlying continuous
constructs while simultaneously modeling population
heterogeneity.

In summary, factor mixture models are designed for het-
erogeneous data, in which the sources of heterogeneity are
unobserved. The sources of heterogeneity are represented
by the latent class variable. The covariance matrix and
means of the observed variables within each latent class are
structured in terms of the common factor model such that
measurement error is taken into account. Factor mixture
models include several well-known models as submodels.
The common factor model can be derived by setting the
number of classes to one. The latent class and latent profile
models can be derived by setting the variances of within-
class factors to zero. The growth mixture model can be
derived by imposing a specific structure on the within-class
covariance matrix (see B. O. Muthén, 2004; B. O. Muthén
& Muthén, 2000). Factor mixture models are flexible be-
cause of the possibility of analyzing continuous and cate-
gorical observed variables in a single model and including
covariates effects in different parts of the model. Compar-
isons of alternative models can be based on statistical tests
and indicators of goodness of fit.

Models

This section consists of two parts: a description of the
general factor mixture model and a discussion of the differ-

ent ways to include covariates. Throughout this section, the
following hypothetical example is used as an illustration.
Suppose a math test consists of several items, and high test
scores require mastery of a skill. The population from which
the sample is drawn is assumed to consist of masters and
nonmasters. Although there is variation in skill level among
the masters and the nonmasters, for the sake of this example
we assume that masters and nonmasters differ with respect
to the mean skill level substantially such that it would be
inappropriate to model the underlying latent skill variable as
a continuous factor. Hence, masters and nonmasters corre-
spond to two different clusters. In addition to this mean
difference with respect to the factor underlying the observed
variables, masters and nonmasters may differ with respect to
several background variables. One of the background vari-
ables is the test takers’ attitude toward math. Suppose pre-
vious research has indicated that attitude is related to
skill level. Attitude is a known source of heterogeneity,
and higher levels of attitude are related to a higher skill
level. With respect to the other background variables, it is
not known whether they are related to the heterogeneity.
Finally, the latent classes differ with respect to a distal
outcome variable (e.g., passing or failing an admission
test).

Both the mean differences in the skill factor and differ-
ences with respect to background variables can be investi-
gated with factor mixture models. Factor mean differences
may often be the primary focus of a study. However, dif-
ferences in background variables provide information for an
additional characterization of the classes (e.g., what are the
characteristics of a master?).

Description of the General Factor Mixture Model

Several different factor mixture models have been pro-
posed in the literature. Yung (1997) presents the confir-
matory factor model with structured means as a within-
class model. This model is similar to the multigroup
confirmatory factor model (Sörbom, 1974), the main dif-
ference being that subpopulation membership is unob-
served. In Arminger et al. (1999), the focus is on esti-
mating the factor mixture model conditional on
covariates such that multivariate normality has to be
assumed only conditional on the covariates. The same
treatment of covariates can be found in B. O. Muthén and
Shedden (1999), who also include categorical outcome
variables in their model that are predicted by class mem-
bership. Jedidi, Jagpal, and DeSarbo (1997b) propose a
full structural equation model as a within-class model.
Dolan and van der Maas (1998) extend this work by
adding the possibility of imposing linear or nonlinear
constraints on the model parameters. The following
model description is based on the description of the
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factor mixture model provided in Muthén and Shedden
(1999).1

The factor mixture model can be decomposed into several
parts. Part 1 is the common factor model for a single
homogeneous population (Jöreskog, 1971). By adding Parts
2, 3, and 4 to the first part in consecutive steps, it is shown
that the factor mixture model is an extension of the common
factor model. The stepwise extension of the common factor
model is depicted in Figure 1 (panels 1 through 4).

Part 1. The common factor model is a linear regression
model in which observed variables are regressed on factors
(see Figure 1, panel 1). In addition, observed variables and
factors can be regressed on covariates. In what follows, the
subscript i is used as an index for variables that vary across
participants. An uppercase letter is used to indicate a ran-
dom variable (e.g., Y is used to indicate an observed vari-
able). The corresponding lowercase letter is used to repre-

sent a realization of the random variable (i.e., yi is
participant i’s score on variable Y). Observed outcome vari-
ables, which are always multivariate, are denoted in bold
(i.e., matrix notation) as Y. Covariates may be multivariate
or univariate and are denoted in bold as X.

The regression intercepts are denoted as �, the regression
slopes or factor loadings as �y, and the regression residuals
as �. The regression residuals in the common factor model
are the sum of specific factors and measurement error
(Meredith, 1993). The direct effect of X on Y is conveyed
through the regression weight �y. Scores on the underlying
factors are denoted as �. The usual assumptions of the
common factor model apply, including that the residuals

1 The technically inclined reader may prefer the more thorough
presentation in Muthén and Shedden (1999).

Figure 1. The factor mixture model shown as a stepwise extension of the common factor model.
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have zero autocorrelations and are uncorrelated with the
factors. The common factor model is expressed as

yi � � � �y�i � �yxi � �i, (1)

�i � ��xi � �i. (2)

The second equation shows that the factor scores � are
regressed on covariates X with regression weights ��. The
residual factor score �i is the part of the factor score that is
not explained by the covariates. The common factor model
is shown in the first panel of Figure 1.

In the hypothetical example, the math test items are Y,
which measure a single underlying math factor �. Attitude
is a single covariate X. If one of the items is especially
sensitive to attitude, this would be captured by a direct
effect of X on that item, and the corresponding �y would be
nonzero. An effect of attitude on the underlying factor is
expressed in ��.

Part 2. The common factor model is a model for a
single homogeneous population (see Figure 1, panel 2). In
the next part, it is extended with a latent class variable to
model unobserved population heterogeneity. The latent
classes are unordered and modeled using a multinomial
variable. For k � 1, . . . , K latent classes, a multinomial
variable with K � 1 categories is needed, and

cik � � 1 if participant i belongs to class k
0 otherwise. (3)

In the example, K � 2 (masters and nonmasters) such that
C reduces to a binomial variable. A participant who is a
master would have the score c � 1 and a nonmaster would
have the score c � 0.

The second part of the factor mixture model extends the
first part by regressing the factor scores on the latent class
variable C (see Figure 1, panel 2). Integrating this extension
in Equations 1 and 2 gives

yik � �k � �yk�ik � �ykxi � �ik, (4)

�ik � Aci � ��k
xi � �ik, (5)

where the subscript k is attached to parameters that may
vary across classes and to random variables that may have
class specific distributions (i.e., different means, covari-
ances). Note that the covariates have no subscript k because
the model is estimated conditional on the covariates. A
contains the intercepts of the factors for each class and has
dimensions Number of Factors � Number of Classes. In
terms of the example, the element in A corresponding to the
masters would be higher than that for the nonmasters. ��k

conveys the effect of attitude on the skill factor. The sub-
script k indicates that the effect size may or may not be the
same for masters and nonmasters. The covariance matrix of

the residual factor scores, �ik, and of the residuals of the
observed scores, �ik, may vary across classes. Note that it is
not possible to estimate all class-specific intercepts and
factor means simultaneously. The same restrictions apply as
in multigroup analyses (Sörbom, 1974).

Part 3. Although a participant is either a master (c � 1,
see Part 2) or a nonmaster (c � 0), the class membership of
the individual participants is not known (see Figure 1, panel
3). This is integrated in the factor mixture model as follows.
The probability of belonging to each of the classes is pre-
dicted for each participant using multinomial regression.
The class probabilities are computed during the model es-
timation (for a slightly different approach, see, e.g., Dolan
& van der Maas, 1998). For instance, after fitting a factor
mixture model to the cognitive test data, a participant may
have a 0.8 probability of belonging to the masters’ class and
a 0.2 probability of belonging to the nonmasters’ class.
Class membership may be predicted by covariates X (e.g.,
attitude increases the probability of belonging to the mas-
ters), which is covered in the third part of the model (see
Figure 1, panel 3). More precisely, covariates X predict the
log odds of the probability of belonging to a given class
compared with the probability of belonging to the (arbi-
trarily chosen) Kth class. The third part of the model is
denoted as

ln�P�cik � 1�xi�

P�ciK � 1�xi�
� � �ck

� �ck
xi. (6)

�ck
contains the regression weights of the covariates. The

intercept or location parameter �ck
can be class specific.

Part 4. The fourth and last part of the model incorpo-
rates observed categorical outcome variables that are pre-
dicted by class membership (see Figure 1, panel 4). In case
the categorical variables are binary, the response categories
do not have to be ordered, and the regression on class
membership is a logistic regression. Say we have j � 1, . . . ,
J binary outcomes U, then

ln� P�uij � 1�ci�

1 � P�uij � 1�ci�
� � �uj

ci. (7)

In case of more than two response categories, the re-
sponse categories have to be ordered and the logistic regres-
sion is extended to an ordered polytomous regression (see
B. O. Muthén & Shedden, 1999, for details). In the example,
P(ui) � 1 is participant i’s probability of passing the ad-
mission test. �u captures the effect that being a master
increases the odds of passing the admission test; hence, the
element in �u corresponding to the masters would be larger
than that for the nonmasters.

It should be noted that the observed continuous variables
Y are assumed to be multivariate normally distributed con-
ditional on class membership and the covariates. Condi-
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tional normality is relevant in the context of using test
statistics such as the adjusted likelihood ratio statistic
(aLRT) for model comparisons (see Step-by-Step Analysis
of LSAY Data at a Single Time Point below), which assume
within-class normality. Note that violations of conditional
normality can have implications for the number of classes
that are extracted (Bauer & Curran, 2003a). Conditional
normality is also relevant in the context of missing data.
Because the model is estimated conditional on the covari-
ates, participants with missing data on covariates are deleted
from the analysis. Covariates may or may not be correlated.
However, specific relations between covariates are not ex-
plicitly specified and estimated. To accommodate for an
interaction between two covariates, it is necessary to include
a variable representing the interaction (i.e., a product of the
two interacting covariates).

In sum, the general factor mixture model features three
types of observed random variables, namely continuous
outcome variables Y (Equation 4), categorical outcome
variables U (Equation 7), and covariates X, which can be
continuous or categorical. Furthermore, there are four types
of unobserved random variables, namely the categorical
latent class variable C (Equations 3, 5, 6, and 7), the
continuous factor scores � (Equation 4), the residual factor
scores � (Equation 5), and the residual scores � (Equation
4). Scores on the random variables vary across participants.
Regression intercepts and regression weights, on the other
hand, are fixed (i.e., they do not vary across participants
within a given latent class). The general factor mixture
model includes as submodels the common factor model, in
which the number of classes equals 1, the classic latent class
and latent profile model, which can be derived as a factor
mixture model with zero factor variance, and the growth
mixture model (Lazarsfeld & Henry, 1968; B. O. Muthén,
2004). Although the approach described in the remainder of
the article is also applicable to these submodels, we focus on
exploring heterogeneity with factor mixture models at a
single time point.

Different Ways to Specify Effects of Covariates X
and Class Variable C

The covariate effects on observed variables, within-class
common factors, and the class variable may vary across
classes. For instance, attitude may have a strong effect on
the skill level of the masters but explain very little variance
of the skill level of the nonmasters. Parameters of the
within-class common factor model (i.e., intercepts, factor
loadings, and residual variances) may also be class specific.
Class-specific effects are closely related to the concept of
measurement invariance. This section, therefore, starts with
an overview of measurement invariance. The different co-
variate effects and other class-specific effects in the factor

mixture model are discussed with respect to measurement
invariance.

Measurement invariance. If subpopulations are to be
compared, one has to ensure that the observed variables on
which the comparison is based are measurement invariant
across the subpopulations. Measurement invariance (MI) as
defined by Mellenbergh (1989) and Meredith (1993) implies
that, given a certain score on the underlying factor, an
observed score does not depend on subpopulation member-
ship. Meredith has shown that MI holds only if the mea-
surement model relating the observed variables to the un-
derlying factors is identical across subpopulations (see
Lubke, Dolan, Kelderman, & Mellenbergh, 2003, for a less
technical account of MI). In the context of the common
factor model, three restrictions have to be imposed on the
model to achieve MI: equality of factor loadings, intercepts,
and residual variances across subpopulations. If either of the
three restrictions is not tenable, MI, as defined, is absent.
Absence of MI implies that the observed measures or indi-
cators may not be measuring the same constructs in the
various subpopulations.

Meredith (1993) has defined three increasingly restrictive
levels of factorial invariance by stepwise adding the three
restrictions. Weak factorial invariance requires equality of
factor loadings, strong factorial invariance adds the restric-
tion of equal intercepts, and strict factorial invariance cor-
responds to the combination of all three restrictions. Be-
cause all three restrictions have to hold, only strict factorial
invariance ensures MI (see Meredith, 1993, for examples in
which even strict factorial invariance fails to imply MI). In
what follows, the three levels of factorial invariance and
their implication for MI are briefly reviewed.

Weak factorial invariance holds if factor loadings are
identical across subpopulations. The common factor model
is a linear regression model, and a factor loading is the slope
of the regression of an observed variable Y on a factor �. If
subpopulations differ with respect to a factor loading, then
a unit increase in the factor score does not result in the same
increase of the observed score across subpopulations. The
differential increase in observed scores is an indication that
one or more factors not included in the model augment (or
attenuate) the observed scores in a subpopulation-specific
way and that this effect increases (or decreases) with in-
creasing factor scores. The observed variable measures dif-
ferent underlying factors in the subpopulations. Therefore,
absence of weak factorial invariance violates MI.

Strong factorial invariance adds the requirement of equal
intercepts to the equality of factor loadings. If subpopula-
tions differ with respect to the intercepts of the regression of
an observed variable Y on a factor � but not with respect to
the factor loadings, then one subpopulation scores consis-
tently higher than the other independent of the scores on the
factor �. The observed mean differences between subpopu-
lations are, therefore, not entirely due to mean differences in
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the factor �, but they are at least partially due to the effects
of factors not explicitly included in the model. Hence,
absence of strong factorial invariance is also a violation of
MI.

Strict factorial invariance adds the restriction of equal
residual covariances to the equality of loadings and inter-
cepts. In the common factor model, the residual variance is
the sum of specific factor variance and random measure-
ment error variance. These two sources of variance cannot
be separated. Differences in residual variance can, therefore,
be due to differences in specific factor variance, random
measurement error variance, or a combination of the two.
Differences in specific factor variance indicate that specific
factors boost or attenuate individual differences in observed
scores differentially across subpopulations. The observed
scores may not measure the same constructs across sub-
populations; hence, absence of strict factorial invariance
violates MI.

Note that strong factorial invariance is often consid-
ered to be a sufficient basis for the comparison of sub-
populations (Little, 1997; Widaman & Reise, 1997). This
is due to the theoretical consideration that even in the
presence of residual variance differences (a) loading
equality ensures that factor variances and covariances
can be compared across subpopulations and (b) intercept
equality ensures that observed mean differences are due
to factor mean differences. In the factor model, the re-
siduals, which contain possible effects of specific factors,
are assumed to have zero means in all subpopulations.
Consequently, if observed mean differences are due to
mean differences in specific factors in addition to factor
mean differences, the specific factor mean differences
would be manifest in terms of intercept differences.
Hence, intercept equality implies absence of specific
factor mean differences. In a practical situation, however,
equality restrictions are evaluated based on likelihood
ratio tests and measures of goodness of fit. Lubke and
Dolan (2003) have shown that unrestricted residual vari-
ances across subpopulations may leave specific factor
mean differences undetected. In the absence of substan-
tive theory that would support differences in residual
variances in a given study, it seems advisable not to
neglect the third requirement of MI.

Assuming MI, differences in means of Y between sub-
populations are exclusively due to differences in common
factor means, and differences in covariances of Y are ex-
clusively due to differences in common factor covariances.
Because, in case of MI, the measurement model relating
observed variables to the factors is the same for all sub-
populations, the interpretation of the factors is the same for
all subpopulations. This fact greatly simplifies comparisons
between subpopulations.

Partial MI (PMI) refers to the absence of MI in one or
more observed items of a test in which the remaining

items are invariant (Byrne, Shavelson, & Muthén, 1989).
The interpretation of subpopulation differences is more
cumbersome in case of PMI and depends on whether PMI
concerns absence of loading equality, intercept equality,
residual variance equality, or a combination of the three.
As shown previously, in case of absence of intercept
equality, higher scores on the noninvariant observed vari-
able are not necessarily due to higher scores on the
construct of interest. However, such a model may still be
highly interesting in an exploration of subpopulation
differences because it reveals a subpopulation difference
in the response to the noninvariant item. To limit the
number of model comparisons, one may compare mea-
surement-invariant models with models in which the
intercepts of an entire scale are unrestricted. This ap-
proach is illustrated in the analysis of the Longitudinal
Study of American Youth (LSAY) data.

Class-specific effects. Seven different possible class-
specific effects correspond to the parameters with a sub-
script k in Equations 4, 5, and 6. They are labeled in
Figure 2 with numbers 1 through 7 and are discussed in
terms of the example described in the beginning of
this section.

The first three effects concern class-specific factor
loadings, intercepts, and residual variances. The implica-
tion with respect to MI of these effects was discussed
previously.

Figure 2. Different effects of covariate X and class variable
C. Solid lines indicate class-invariant parameters. Dashed
lines indicate the possibility to specify class-specific para-
meters.
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Path 1. Path 1 refers to class-specific factor load-
ings. Using the example, a higher factor loading for
the masters, for example, means that skill level inter-
acts with being a master versus a nonmaster; with an
identical increase in skill level, the observed scores of
the masters would increase more than those of the
nonmasters.

Path 2. Path 2 indicates class-specific intercepts. A
class-specific intercept occurs if all masters have the same
advantage on one of the items and if this advantage cannot
be explained by a higher score on the skill factor or by the
covariates X.

Path 3. Path 3 represents class-specific residual vari-
ances, which arise if scores of masters vary more (or less)
than the scores of nonmasters because of a difference in
variation of specific factors or measurement error.

Path 4. Path 4 indicates the effects of the class variable
on the common factors. These effects serve to model factor
mean and covariance differences between masters and non-
masters that are not accounted for by one or more covari-
ates. Effects of the class variable on the common factors do
not violate MI. In fact, the comparisons of classes with
respect to factor means and covariances are often the focus
of a study.

There are three different possible ways to include
covariate effects. All covariate effects can be specified as
class-invariant or as class-specific effects. First, covari-
ates can explain within-class variation by directly influ-
encing observed variables Y through regression coeffi-
cient �y. Second, covariates can influence the observed
variables indirectly through latent continuous variables
�, which is modeled using coefficient ��. Third, covari-
ates can explain between-class variation by influencing
the latent class variable C, which is conveyed through
coefficient �c.

Path 5. The path �y is the direct effect of the covari-
ate on an observed variable. It indicates that within class
some of the variation in the observed variable is due to
variation in X. Equally, the mean of the observed variable
depends at least partially on the covariate. The interpre-
tation in terms of the hypothetical example is as follows.
Attitude influences performance on one (or more) of the
test items in addition to the influence of the latent cog-
nitive skill factor. If this path is specified to be class
invariant, the latent classes can still be compared in a
straightforward way with respect to their factor intercepts
(e.g., masters and nonmasters differ with respect to their
skill level, there is no difference between masters and
nonmasters in the influence of attitude on the particular
test items). If, alternatively, the effect of the covariate is
class specific, then there is noninvariance across classes.
Path 5 means that there is an interaction between the class
variable and the covariate with respect to the effect on the

observed variable. The measurement model, which re-
lates observed variables to the factors, is not the same
across classes; hence, class comparisons are more com-
plicated to interpret. In terms of the example, masters and
nonmasters differ with respect to skill, and the effect of
attitude on one of the test items may be high for the
nonmasters but almost absent for the masters.

Path 6. The path �� specifies an effect of the covariates
on the factor means and covariances. In other words, atti-
tude has an effect on the skill level. If this effect is class
invariant, then the effect is the same for the masters and the
nonmasters and there is no violation of MI. If the effect is
allowed to vary across classes, we have an interaction
between the class variable and the covariate with respect to
the effect on the factor. This is not a violation of MI because
the measurement model relating Y to � does not vary
across classes.

Path 7. The path �c concerns the prediction of
the odds of belonging to one class versus belonging
to a reference class. For instance, in a three-class
model, there are two such regression coefficients corre-
sponding to (a) the odds of belonging to Class 1 versus
Class 3 and (b) the odds of belonging to Class 2 versus
Class 3. It is possible to restrict these covariate effects to
be equal for all possible odds, but usually the effect
will differ.

Although the possibility of specifying different class-
specific effects is clearly an advantage, it is also obvious
that the interpretability of a model can rapidly decrease
with an increasing number of effects. Ideally, decisions
to include or not include class-specific effects in the
model are theory driven. For instance, attitude may be
expected to have an impact on the variation in skill level
within the masters and the nonmasters classes and on the
skill level differences between masters and nonmasters.
Consequently, the factor and the class variable would be
regressed on attitude. A covariate such as course partic-
ipation may be important mainly in explaining differ-
ences between masters and nonmasters. In that case, only
the class variable is regressed on the covariate. In an
exploratory analysis, in which theory with respect to the
sources of population heterogeneity is less specific, a
series of models may be considered in which increasingly
restrictive models are fitted to the data. Initial models
may include effects of the covariates on both the within-
class factors and the latent class variable. To explore
mean differences between classes, which are generally a
main interest of a mixture analysis, one may compare
models with class-specific intercepts (i.e., partially in-
variant models) with models with class-invariant inter-
cepts. This approach is illustrated in the analysis of the
LSAY data.
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Step-by-Step Analysis of LSAY Data at a Single
Time Point

General Outline

The step-by-step analysis in this section provides an il-
lustration of how population heterogeneity may be investi-
gated with factor mixture models. The latent class variable
serves to model unknown heterogeneity, whereas variables
that are known to induce heterogeneity are included as
covariates. In the current approach, the researcher has to
specify the number of latent classes for each model before-
hand. During the model estimation, not only are the param-
eters of the model estimated but the posterior probabilities
with which each participant belongs to each of the classes
are calculated. Hence, the results consist of the model
parameters such as within-class factor loadings and inter-
cepts, factor mean differences between classes and so on,
and the posterior class probabilities for each participant. For
instance, the resulting class probabilities for the first partic-
ipant in a study may be .85, .10, and .05 of belonging to
Classes 1, 2, and 3, respectively, and for the second partic-
ipant .95, .05, .0, and so on. On the basis of their highest
probability, participants can be assigned to one of the
classes. This classification is the basis for post hoc analyses,
which serve to compare classes, and to decide whether an
additional class is informative.

Fitted models. In the main analysis below (see Factor
Mixture Modeling), the within-class models are confirma-
tory factor models. Hence, the analysis is not exploratory
with respect to the factor structure of the test. The pattern of
factor loadings is assumed to be known from previous
research. The analysis is exploratory with respect to the
sources of population heterogeneity. Commonly, a key in-
terest in an exploration of population heterogeneity is the
investigation of mean differences between latent classes.

In the analysis of the LSAY data, we, therefore, fit four
models with increasing restrictions on the model for the
observed means within class. In all four models, loadings
are class invariant such that factor variances and covari-
ances can be compared across classes. Residuals are equally
class invariant. Model 1 imposes no restrictions on the
means of the observed variables (i.e., the intercepts of all
indicators of the math and science factor are class specific).
This is the noninvariant model. Next, two different partially
invariant models are specified. In Model 2, all intercepts of
the indicators of the math factor are specified to be class
specific, but the science scale is specified to be measurement
invariant. If this model holds, classes can be compared with
respect to the means of the science factor. The class differ-
ences in the individual indicators of the math factor can be
due to other factors in addition to the math factor and have
to be interpreted accordingly. In Model 3, the pattern is
reversed and the math scale is specified to be invariant

whereas the science scale is noninvariant. Model 4 is a fully
measurement invariant model in which factor loadings, in-
tercepts, and residual variances are specified to be equal
across classes.

The main analysis is followed by a post hoc comparison
with respect to background variables. Intercept differences
may be due to mean differences in specific factors. To detect
potential specific factors (or variables related to specific
factors), it is useful to compare classes with respect to
available background variables that had not been included
in the main analysis and to investigate how classes differ
with respect to these background variables. If classes differ
substantially with respect to a background variable, it can be
included as a covariate in a subsequent analysis.

In an empirical study, often large numbers of background
variables are measured. Only some of these variables are
known to induce heterogeneity, whereas others are mea-
sured for exploratory purposes. On the basis of a simulation
study by Lubke and Muthén (2003), we propose to include
only those variables as covariates in the factor mixture
models that are expected to have a significant effect and to
use all other background variables in post hoc analyses. The
simulation study has shown that covariates with medium to
large effects on class membership improve model perfor-
mance in terms of correct class assignment and parameter
recovery. Including large numbers of categorical covariates
may lead to convergence problems, which are likely due to
low frequencies of some combinations of response catego-
ries. In the current illustration, the choice of variables that
are included as covariates in the main analysis and variables
that are used in the post hoc analysis is entirely arbitrary.

Model comparisons. Models are fitted with an increas-
ing number of classes, and the fit of the different models is
compared. Regarding mixture model comparisons, the fol-
lowing issue deserves consideration. Model misspecifica-
tions can correspond to the imposed restrictions within class
(e.g., restrictions of measurement invariance) or to the num-
ber of classes. To achieve an improvement in model fit,
restrictions within class can be relaxed or the number of
classes can be increased. Hence, model comparisons have to
be carried out both between models with different numbers
of classes and between models that differ with respect to
their restrictions. Models that impose more restrictions on
the means and covariances within class imply a different
distribution of the data than a more lenient model with the
same number of classes. More restrictive within-class mod-
els often require the addition of more classes than models
that are more lenient. For instance, the fully invariant model
may require more classes than the more lenient partially
invariant models. In that case, models with different num-
bers of classes need to be compared. Models with different
numbers of classes cannot be compared using the usual
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likelihood ratio test because regularity conditions are not
met (Cramér, 1946; McLachlan & Peel, 2000).2

There are different approaches to compare models and to
decide on the number of classes (see, for instance, Nagin,
1999). Commonly used are fit indexes such as the Akaike
Information Criterion (AIC), Bayesian Information Crite-
rion (BIC), sample size-adjusted BIC (aBIC), and aLRT.
These indexes are described in Akaike (1974), Schwarz
(1978), L. K. Muthén and Muthén (2001), and Lo, Mendell,
and Rubin (2001), respectively. Because AIC, BIC, and
aBIC have different penalties on the number of parameters
and adjust differently for sample size, different decisions
may be reached based on those criteria. In addition to the
information criteria and the aLRT, we approach the com-
parison of models also from a more content-oriented point
of view. An additional class may reveal an interesting
subpopulation. However, an additional class may also result
in the splitting of a well-interpretable latent class into two
poorly interpretable classes. The utility of an additional
class with respect to substantive theory can be assessed by
comparing classes with respect to factor means or intercepts
of observed variables and the means of the covariates. The
stability of a given class across solutions with increasing
numbers of classes can be traced with transition matrices.
Transition matrices show how many participants from a
given class of, for example, a two-class model are assigned
to each of the classes in a three-class model.

In the following analysis, the numbers of factors of the
test are assumed to be known, and confirmatory within-class
models are specified. If the measurement model that relates
observed variables to underlying factors is unknown, it is
possible to specify exploratory factor models with increas-
ing numbers of factors as within-class models (McLachlan
& Peel, 2000). The exploratory factor mixture model is a
submodel of the general factor mixture model described
previously. In the exploratory factor mixture model, both
the factor structure and the sources of population heteroge-
neity are explored simultaneously. Measurement models
may also differ with respect to their factor structure across
classes (e.g., see Dolan & van der Maas, 1998). Note that if
the factor structure within class has to be investigated, the
possibility of specifying equivalent models has to be taken
into account. Equivalent models imply the same distribution
but differ with respect to the structure they impose on the
data and may differ considerably with respect to their con-
ceptual interpretation. In the context of models for data from
single homogeneous populations, the problem of equivalent
models has led to a considerable body of research (see, for
instance, Hershberger, 1994; Luijben, 1993; MacCallum,
Wegener, Uchino, & Fabrigar, 1993; Raykov & Marcou-
lides, 2001). In the context of mixture models, additional
problems may arise because models for different numbers
of classes may imply the same mixture distribution (for
examples, see McLachlan & Peel, 2000). Addressing the

problem of equivalent models in detail, however, is beyond
the scope of this study.

Data Description

Starting in 1987, LSAY data have been collected for two
cohorts through 1994 (Miller, Kimmel, Hoffer, & Nelson,
2000). Both cohorts are national samples. As part of the
LSAY, a math and a science achievement test was admin-
istered each year. For current purposes, data from the sec-
ond cohort obtained during the last year at high school are
analyzed. More specifically, we use the scores derived by
Miller et al. (2000) based on item response theory (IRT) for
the four math subscales (i.e., basic mathematics, algebra,
geometry, and quantitative literacy) and the IRT scores
computed for the three science subscales (i.e., biological,
physical, and environmental sciences). The measurement
model has a two-factor structure, with math subscales load-
ing on a math factor and science subscales loading on a
science factor. The model has a single cross-loading (i.e.,
environmental sciences has a small negative loading on the
math factor). Gender and urban status are treated as known
sources of heterogeneity and are incorporated as covariates
in the factor mixture models. Urban status indicates whether
a student lives in a suburban, urban, or rural environment.
Urban and rural students do not differ significantly with
respect to their math and science subscale scores (Miller et
al., 2000). Both urban and rural students score lower than
suburban students. Hence, a binary covariate is created:
urban–rural versus suburban. The sample size in the illus-
tration is 982 participants. As mentioned, factor mixture
models are estimated conditional on covariates; therefore,
the participants included in this illustration have no missing
data on the covariates. Coincidentally, there are also no
missing data on the math and science subscales.

The LSAY data have a multilevel structure because of the
sampling design (e.g., students within classes within
schools within neighborhoods). In the current study, we
initially used the so-called sandwich estimator to compute
parameter estimates and their standard errors (Amemiya,
1985; Zeger & Liang, 1986). This estimator accounts for the
fact that observations are not independent. Because the
results were very similar to those using the maximum like-
lihood estimator, only the latter results are presented. For
more in-depth description of the design of the LSAY, the

2 Suppose H0 corresponds to a model with k classes, which is to
be tested against a model with k � 1 classes. The k-class model can
be specified to have one of the mixing proportions equal to zero.
All other parameters being equal, it can also be specified by letting
the means of two classes be equal. Hence, true values of param-
eters under H0 are on the boundary of the likelihood and also in a
nonidentifiable subset of the parameter space, which renders reg-
ularity conditions invalid (see McLachlan & Peel, 2000, p. 187).
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sampling scheme, and other details, the reader is referred to
the LSAY manual (Miller et al., 2000). Model fitting is
carried out with Mplus 2.1 (L. K. Muthén & Muthén, 2002).
Post hoc class comparisons are done in S-PLUS (S-PLUS,
2001) but may also be done in any spreadsheet program that
allows for the computing of mean values.3

Factor Mixture Modeling

The distribution of the covariates gender and urban status
in the total sample is shown in Table 2. The regression of
factor scores on the covariates is estimated in all classes and
is specified to be class specific. In other words, it is esti-
mated how much variation in the common factors is due to
gender and urban status within each of the classes. The class
variable is also regressed on the covariates, which gives an
estimate of the between-class variation that is due to gender
and urban status.

The proportion females in the total sample is .53 and the
proportion urban–rural students is .56.

Tables 3 and 4 show that gender and urban status are
indeed inducing heterogeneity in the sample. The means on
the math and science subscale scores are higher for the boys
than for the girls and also higher for the suburban students
than for the urban–rural students.

Results of latent class models, including factor mixture
models, can depend on starting values for the parameters.
This is due to the possibility that the likelihood has multiple
local minima. Depending on the set of starting values, the
estimation algorithm may stop at a local minimum and fail
to detect the global minimum. The problem of multiple
local minima may be especially severe if the covariance
matrices are not equal across classes (McLachlan & Peel,
2000). A common way to address this problem is to estimate
the model with different sets of starting values and choose
the solution with the smallest minimum. In the current
analysis, each model is fitted with several different sets of
starting values. We provide class-specific starting values for
the factor means (if these are not fixed to zero). All other
parameters have default starting values, which do not differ
across classes. Factor loadings have default starting values
equaling 1, whereas intercept starting values are 0. None of
the models displayed convergence problems during param-
eter estimation.

Results of mixture modeling. To obtain a baseline by
which mixture models can be evaluated, a two-factor single-
class model was first fitted to the data. In a single-class
model, the means cannot be structured. The factor scores are
regressed on gender and urban status. These covariates
explain 5% of the variance of the math and science factor in
the total sample. The factor mixture models can provide a
more detailed picture, as shown next.

Two-, three-, four-, and five-class versions of the nonin-
variant Model 1, the partially invariant Models 2 and 3, and
the fully invariant Model 4 are fitted. The results in Table 5
pertain to Models 1, 2, and 4. Model 2 always outperforms
Model 3, and the results of Model 3 are, therefore, not
presented. In Model 2, the science scale is measurement
invariant, but the intercepts of the indicators of the math
factor are class specific. The first three columns of Table 5
show the fit indexes AIC, BIC, and aBIC. A model with a
lower AIC, BIC, or aBIC is preferred over one with higher
indexes. The fourth column shows the aLRT, which pro-
vides a test whether deleting a class results in a significantly
worse fit (Lo et al., 2001). A significant p value of the test
confirms, therefore, that the current model fits better than
the model with one class less.

Fitting a single-class model results in worse fit measures
than any of the two-class models. Equally, the p values of
the aLRT of all two-class models confirm that two classes
provide a better fit than the single-class model. Among the
two-class models, the noninvariant Model 1, which is the
least restrictive model, fits best. This changes when a third
class is added. The indexes indicate that a three-class model
should be preferred to the two-class model and that, within
the three-class models, the partially invariant model pro-
vides the best fit. The results of the four-class models are
consistent with respect to the best fitting model, which is
again the partially invariant model. For the partially invari-
ant model, the indexes are also in agreement with respect to
the need of the fourth class. For the other two models, AIC
and aBIC favor the four-class solutions, whereas BIC and
aLRT favor the three-class solutions. The five-class models
show almost the same pattern. The difference is that BIC
and aLRT indicate that four classes suffice not only for the
noninvariant and the invariant model but also for the par-
tially invariant model. AIC and aBIC favor the five-class
partially invariant model. To complete the model-fitting part
of the investigation, a six-class partially invariant model is
fitted to the data. The pattern of results remains unchanged;
only AIC and aBIC indicate the need of the sixth class.

It is noteworthy that the factor structure is stable across
models. The estimates of corresponding factor loadings are

3 An Mplus input file with comments and a file containing
artificial data with a structure similar to the LSAY data are avail-
able at http://dx.doi.org/10.1037/1082-989X.10.1.21.supp

Table 2
Cross-Tabulation of Gender and Urban Status

Gender Urban–rural Suburban
Marginal

counts

Female 308 209 517
Male 241 224 465
Marginal counts 549 433 982
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similar in value, and the loadings have the same order
regardless of the number of classes a model has or how the
observed means are structured. The same holds for the
residual variances. The proportion of variance in the ob-
served variables that is explained by the factors (e.g., the
observed variable R2s) ranges very consistently between 0.4
and 0.8 across all models. Parameter values and standard
errors of factor loadings, residual variances, and factor
covariances for the four-, five-, and six-class partially in-
variant models are presented in Table 6.

The four-, five-, and six-class partially invariant models
are selected for further investigation. The question whether,
compared with the four-class model, the additional classes
in the five- and six-class model provide useful information
concerning heterogeneity is addressed in the following four
ways. First, because the science scale in this model is
measurement invariant, classes can be compared with re-
spect to the science factor means. The intercepts of the
indicators of the math factor are class specific; hence, class
differences in the math subscales cannot be attributed to
math factor differences but have to be interpreted as ob-
served mean differences. Observed mean differences may
be due to other factors in addition to the underlying math
factor. Second, for each of the three models, participants are
assigned to the class corresponding to their highest posterior
class probability. Based on the assignments, proportions of
females and urban–rural students for each class can be
computed, which, in turn, can be used to characterize the
classes. Third, the class assignments are used to compute
the within-class means of a number of behavioral and atti-

tudinal variables that are potential sources of heterogeneity
and that are included only in the post hoc analysis: thoughts
of dropping out, disciplinary problems, boredom at school,
and number of friends who had dropped out of high school.
Finally, the class assignments are used to derive transition
matrices for the four-class to five-class and five-class to
six-class models. These matrices show how many partici-
pants of a given class of a model with a given number of
classes migrate to each of the classes of a model with an
additional class. An indication of a stable class would be if
Class 1 of a 4-class model, for example, has almost the same
members as one of the classes in the corresponding five-
class model. Characterizing classes and tracing stable
classes can provide insight whether additional classes are
informative.

Table 7 provides the latent class proportions, the range of
intercepts of the math subscales and the science factor
mean, the within-class proportions of gender and urban
status, and the means of thoughts of dropping out, disci-
plinary problems, boredom at school, and the number of
friends who had dropped out of high school for the four-,
five-, and six-class partially invariant model. Tables 8 and 9
show the transition matrices for the four-class to the five-
class model and the five-class to the six-class model, re-
spectively.

Class 1 of the four-class model has intermediate to high
scores on the math subscales and an intermediate score on
the science factor. It contains 38% of the participants. About
70% of the members of this class form Class 2 of the
five-class model, which, in turn, remains relatively stable

Table 4
Mean Subscale Scores for Urban Status

Urban status Algebra Geometry Quant. lit. Basic Env. sci. Biology Physics

Urban–rural
M 8.8 7.9 6.9 6.9 6.6 6.7 6.6
SD 2.4 2.1 1.6 1.4 1.5 1.4 1.3

Suburban
M 9.5 8.8 7.5 7.4 7.2 7.1 7.1
SD 2.4 2.1 1.5 1.3 1.4 1.4 1.3

Note. Quant. lit. � quantitative literacy; Basic � basic mathematics; Env. sci. � environmental science.

Table 3
Mean Subscale Scores for Gender

Gender Algebra Geometry Quant. lit. Basic Env. sci. Biology Physics

Female
M 9.2 8.1 7.0 7.1 6.7 6.8 6.7
SD 2.3 2.1 1.5 1.3 1.3 1.3 1.2

Male
M 9.3 8.5 7.3 7.2 7.0 7.0 7.1
SD 2.6 2.3 1.6 1.4 1.7 1.5 1.4

Note. Quant. lit. � quantitative literacy; Basic � basic mathematics; Env. sci. � environmental science.
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and appears as Class 2 of the six-class model. The propor-
tion of females and urban–rural students is higher than in
the total sample.

Class 2 of the four-class model excels in the math sub-
scales and the science factor. The class is almost identical to
Class 4 of the five-class model and to Class 4 of the
six-class model. This class consists of about 40% of the
sample and has slightly more boys and clearly more subur-
ban students than the general sample.

Class 3 of the four-class model can be characterized as
the low-scoring class in both math and science and contains
16% of the participants. It largely contributes to Class 3 of
the five-class model, and Class 6 of the six-class model
draws almost entirely from this class. This class has a high
percentage of urban–rural students. The proportion of fe-
males is the same as in the general sample, although it drops
slightly from the four-class to the five-class to the six-class
model.

Class 4 of the four-class model is a small class (6% of the
sample). The class scores low on science and slightly higher
on the math subscales than the low-scoring class. The class
is almost identical to Class 5 of the five-class model and to
Class 1 of the six-class model. The proportion of females is

low, and the proportion of urban–rural students is somewhat
higher than in the total sample.

Taking into account the classes that remain relatively
stable when the four-class model is extended to a five-class
model, it appears that the additional class in the five-class
model is Class 1. Class 1 draws 30% of the Class 1 members
of the four-class model and some Class 3 members. This
new class consists mainly of girls and urban–rural students,
with low science scores and medium math scores. The class
does not remain stable when the model is extended to a
six-class model. About two thirds migrate to Class 5 of the
six-class model, whereas one third goes to Class 2 (see
Table 9).

The additional classes of the six-class model are Classes
3 and 5; they cannot be clearly traced back to one of the four
classes of the four-class model. Class 3 is a small class that
draws from Classes 2 and 4 of the five-class model. It
consists mainly of boys, and the proportion urban–rural is
not much lower than in the general sample. Class 5 draws
from Classes 1 and 2 of the five-class model. It consists of
11% of the sample and has mainly girls and urban–rural
students; scores on the math scales and the science factor
are slightly higher than those of the low-scoring class.

Table 10 shows the percentage of variance of the factor
scores explained by gender and urban status within each
class. In the single-class model, gender and urban status
explain 5% of the variance. The general result in the four-,
five-, and six-class partially invariant models is that gender
and urban status explain more than 10% of the variance of
the math and science factor but only in low-scoring classes.
These are Class 3 in the four-class model, which corre-
sponds to Class 4 in the five- and six-class models, the
additional class (e.g., Class 1) of the five-class model, and
the additional classes of the six-class model (e.g., Classes 3
and 5). The pattern of covariate effects is consistent with the
results of tracing classes across the four-, five-, and six-class
models. Absence of similar covariate effects in the other
classes does not seem to be due to a restriction of range,
which can be deduced from the within-class proportions of
the covariates shown in Table 7.

Considering the variables that are included only in the
post hoc analysis, one can see that the scores on the covari-
ates thoughts of dropping out, disciplinary problems, and
number of friends who have dropped out are highest in the
low-scoring class across all three models. The low-scoring
class consists of mainly urban–rural students, and the pro-
portion of girls is similar to that for the total sample. Hence,
one might conclude that gender is less important than urban
status when it comes to the three post hoc variables. Adding
classes to the four-class model results in additional classes
with low scores in science or both math and science. Gen-
erally, these classes have more extreme within-class pro-
portions of gender and urban status than the classes of the
four-class model. Adding classes reveals a more fine-

Table 5
Fit Indexes for One- to Six-Class Models

Variable AIC BIC aBIC
aLRT

(p)

Single class
Unstructured

means 17,493.7 17,625.7 17,540.0 N/A

Two class
Noninvariant 17,159.7 17,359.8 17,229.6 .0
Partially invariant 17,194.5 17,385.2 17,361.4 .0
Fully invariant 17,413.0 17,589.1 17,474.7 .0

Three class
Noninvariant 17,061.3 17,330.2 17,155.5 .0
Partially invariant 16,949.9 17,199.2 17,037.3 .0
Fully invariant 17,339.9 17,560.0 17,417.1 .0

Four class
Noninvariant 17,032.2 17,369.6 17,150.4 .37
Partially invariant 16,881.6 17,189.7 16,989.6 .03
Fully invariant 17,233.4 17,497.5 17,326.0 .48

Five class
Noninvariant 16,948.5 17,354.3 17,090.7 .68
Partially invariant 16,847.4 17,213.8 16,975.6 .84
Fully invariant 17,199.0 17,507.0 17,307.0 .64

Six class
Partially invariant 16,795.6 17,221.0 16,944.7 .30

Note. Lower values of the information criteria AIC, BIC, and aBIC
indicate better fitting models. AIC � Akaike Information Criteria; BIC �
Bayesian Information Criteria; aBIC � adjusted BIC; aLRT � adjusted
likelihood ratio test statistic.
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grained picture concerning the variable disciplinary prob-
lems. The characteristics of the additional classes in the
five- and six-class models indicate that disciplinary prob-
lems are related to gender. The additional Class 1 of the
five-class model and Class 5 of the six-class model, which
draws from Class 1 of the five-class model, consist mainly
of girls and urban–rural students. These classes have lower
scores on three of the post hoc variables. However, Class 3
of the six-class model, which has a high proportion of boys
but a proportion of urban–rural students that is only slightly
lower than in the total sample, has an even higher score on
disciplinary problems than the relatively stable low-scoring
class in all models (e.g., Class 3 in the four-class model,
Class 4 in the five- and six-class models).

In this analysis, we use different ways to gain insight
concerning heterogeneity, including information criteria
and the aLRT, class comparisons with respect to their
means, post hoc comparisons on additional variables, and
transition matrices. To summarize the results, based on BIC
and aLRT, the four-class partially invariant model would be
chosen. AIC and aBIC continue to decrease when classes
are added. Transition matrices show that three classes of the
four-class model remain largely stable when extending the

model with additional classes. Additional classes in five-
and six-class models are mainly derived by splitting up the
fourth class. Post hoc comparisons of the classes using
additional variables show that not much information is
gained by adding a fifth or sixth class, with the exception of
the variable disciplinary problems. The latter piece of in-
formation may be useful in future research. Taken together,
and considering the general aim of model parsimony, the
four-class partially invariant model seems to provide a
suitable description of the heterogeneity in the current
sample.

Discussion

Factor mixture models are a tool to investigate population
heterogeneity. Compared with a single-class analysis, a
factor mixture analysis can provide a detailed description of
clusters of participants within a sample. In the illustration,
the single-class analysis showed only the very general result
that gender and urban status had an effect on the math and
science factors. The factor mixture analysis resulted in
clusters with specific patterns of means of observed scores

Table 6
Class-Invariant Parameters in the Partially Invariant Four-, Five-, and Six-Class Models

4-class model 5-class model 6-class model

M SD M SD M SD

Factor loadings on the math factor
ALG 1.00 0.00 1.00 0.00 1.00 0.00
GEO 0.89 0.09 0.85 0.09 0.76 0.09
QLT 0.65 0.08 0.70 0.08 0.67 0.07
BAS 0.55 0.06 0.55 0.06 0.52 0.07
ENV �0.38 0.09 �0.33 0.07 �0.33 0.08

Factor loadings on the science factor
PHY 1.00 0.00 1.00 0.00 1.00 0.00
ENV 1.34 0.08 1.29 0.06 1.24 0.05
BIO 0.99 0.03 0.99 0.03 0.99 0.03

Covariance between the math and science factors
0.38 0.05 0.34 0.04 0.28 0.04

Residual variances
ALG 0.81 0.07 0.82 0.06 0.79 0.07
GEO 0.49 0.03 0.47 0.03 0.48 0.03
QLT 0.26 0.02 0.24 0.02 0.23 0.02
BAS 0.16 0.01 0.16 0.01 0.16 0.01
ENV 0.17 0.03 0.19 0.03 0.16 0.03
BIO 0.39 0.02 0.39 0.02 0.39 0.02
PHY 0.17 0.02 0.17 0.02 0.17 0.02

Residual factor variances
Math 0.53 0.10 0.50 0.09 0.52 0.09
Science 0.69 0.05 0.61 0.04 0.52 0.05

Note. ALG � algebra; GEO � geometry; QLT � quantitative literacy; BAS � basic mathematics; ENV �
environmental science; PHY � physics; BIO � biology.
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and factors and with differing proportions of females and
urban students.

Factor mixture modeling is a different approach to inves-
tigating heterogeneity than multigroup modeling. Multi-
group models are applicable if a sample is divided into
explicitly defined groups based on one or more observed
variables such as gender. The purpose of multigroup models
is to compare these groups with respect to their scores on a
given test or questionnaire. The purpose of latent class
models, including factor mixture models, is different. The
clustering of the participants into the latent classes is in-
ferred from the observed scores, such as the math and
science scores, gender, and urban status in the illustration.
The latent class approach is appropriate if the interest is in
detecting and characterizing clusters of participants (e.g.,
low-scoring students in an educational study or a class of
participants with high scores on an anxiety test).

Guidelines regarding the sample size needed for an ex-
ploratory analysis of population heterogeneity are difficult if
not impossible to provide. An adequate sample size depends
on several different factors, including the number of classes,
the restrictiveness of the within-class model, the within-
class model complexity, the quality of covariates, and the

reliability of the observed data within class. This situation is
not different from common factor analysis, in which Mac-
Callum, Widaman, Zhang, and Hong (1999) have shown
that simple rules of thumb for the minimum sample size
needed for the recovery of factors are inappropriate because
an adequate sample size depends strongly on characteristics
of the variables and the study design.

Table 7
Characteristics of the Four- to Six-Class Partially Invariant Model

Class
Class

proportion Female Urb–rur

Self-drop Problem Bored
Friends

drop

Math ScienceM SD M SD M SD M SD

Total population N � 982

.53 .56 .05 .23 .07 .26 0.42 .49 1.38 .71

Four-class model

1 .38 .59 .60 .05 .22 .07 .25 0.40 .49 1.38 .69 6.5–8.9 0.47
2 .40 .49 .46 .03 .16 .07 .25 0.44 .50 1.19 .50 8.0–10.4 1.13
3 .16 .53 .71 .12 .32 .10 .30 0.42 .50 1.81 .99 5.0–6.1 0.03
4 .06 .38 .54 .11 .31 .11 .31 0.29 .46 1.47 .65 6.2–6.4 0

Five-class model

1 .11 .70 .77 .04 .20 .02 .14 0.33 .47 1.37 .64 5.7–8.1 �0.44
2 .30 .57 .52 .05 .23 .08 .27 0.44 .50 1.39 .71 6.8–9.1 0.59
3 .15 .50 .70 .12 .33 .12 .32 0.41 .49 1.84 .99 5.0–6.0 �0.11
4 .38 .48 .47 .03 .17 .07 .26 0.44 .50 1.18 .50 7.8–10.5 1.00
5 .06 .35 .60 .09 .29 .09 .29 0.36 .48 1.46 .66 6.0–6.4 0

Six-class model

1 .07 .41 .66 .04 .20 .09 .28 0.32 .47 1.53 .71 5.7–6.2 0.50
2 .28 .59 .54 .05 .22 .07 .26 0.44 .50 1.38 .70 7.0–9.4 1.13
3 .04 .30 .53 .12 .33 .15 .37 0.31 .47 1.52 .99 7.5–9.7 0.30
4 .36 .48 .44 .02 .16 .06 .25 0.45 .50 1.16 .44 7.9–10.7 1.74
5 .11 .71 .79 .06 .24 .03 .17 0.32 .47 1.36 .67 5.5–7.8 0.55
6 .14 .49 .68 .13 .34 .11 .32 0.40 .49 1.86 .99 4.8–5.7 0

Note. The science factor means should be interpreted in terms of mean differences compared with the last class, which has the science factor mean fixed
at zero. Standard errors of the intercepts typically range between 0.1 and 0.5. Urb–rur � urban–rural.

Table 8
Transition Matrix: Four Classes to Five Classes

Class Class 1 Class 2 Class 3 Class 4

1 96 0 12 1
2 273 19 1 0
3 0 0 147 0
4 0 376 0 0
5 7 0 3 47

Note. Transition matrices show how many participants from a given class
of a k-class model are assigned to each of the classes in a k � 1-class model
and, therefore, reveal the stability of classes across solutions with increas-
ing numbers of classes. Columns correspond to the k-class model and rows
to the k � 1-class model. For instance, Class 4 in the four-class model
consists of 1 � 47 � 48 participants, 1 participant is assigned to Class 1
of the five-class model, and the remaining 47 participants are assigned to
Class 5 of the five-class model.
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Factor mixture models have the advantage over other
latent class and regression models that the factor structure of
a test or questionnaire is explicitly modeled and that the
observed scores are decomposed into factor scores and a
residual containing specific factors and measurement error.
Factor mixture models are broadly applicable to data from
tests or questionnaires that are designed to measure theo-
retical constructs that can be represented by the factors of a
factor model. In the current study, factor mixture modeling
is demonstrated for data collected at a single time point. The
general factor mixture model described in the model section
includes the growth mixture model and can, therefore,
equally be applied to longitudinal data to detect latent
classes that differ with respect to their growth trajectories
(B. O. Muthén, 2001). To compare growth trajectories of
latent classes with respect to factors that do not contain
measurement error, it is necessary to analyze multivariate
outcomes at each time point (Hancock, Kuo, & Lawrence,
2001). It is noteworthy that more general mixture models
than the factor mixture model have been proposed. These
include full structural equation models in which relations
between latent variables can be investigated (see, for in-
stance, Jedidi et al., 1997b). An extension of growth mixture
models, including switching between growth curves, has
been described by Dolan, Schmittmann, Lubke, and Neale
(2005).

Related to modeling the factor structure is the possibility
to test whether a questionnaire is measurement invariant
across classes. Evidence of measurement invariance almost

certainly implies that a test or questionnaire measures the
same underlying factors across classes and greatly simpli-
fies the interpretation of results (Lubke et al., 2003;
Meredith, 1993). The interpretation of partially measure-
ment-invariant models is more cumbersome (Lubke et al.,
2003). Measurement invariance with respect to the latent
class variable can be investigated by comparing noninvari-
ant models with more restrictive partially or fully invariant
models. The comparisons can be guided by measures of
goodness of fit such as AIC, BIC, and aLRT.

In the illustration, we focused on different models for
mean differences between classes because these are often
the key interest of a mixture analysis. However, it may also
be of interest to compare models with different covariate
effects. In an actual study of the LSAY data, one of the aims
may have been an investigation of an interaction effect of
gender and urban status on class membership and math and
science performance. When interpreting the results of a
factor mixture analysis with covariates, it is important to
realize that the assigned class membership of a participant is
model dependent and not an innate quality of the partici-
pant. Consider a model for a depression questionnaire in
which class membership is predicted by gender and a sec-
ond model for the same test data in which the class variable
is predicted by social economic status. The class variable
has a different interpretation in the two models: It describes
a different kind of heterogeneity. In the first case, clusters
are formed with respect to the depression factor and gender
and in the second case with respect to the depression factor
and social economic status. The class membership of a test
taker is not necessarily the same in the two models.

Related to the interpretation of the class variable is the
question of how to decide on the number of classes. Deter-
mining the number of classes is the subject of a still-
growing body of research and has led to interesting discus-
sions (Bauer & Curran, 2003a; Bauer & Curran, 2003b;
Cudeck & Henly, 2003; B. O. Muthén, 2003; Rindskopf,
2003). Mixture modeling can serve not only to detect clus-
ters of participants in a population but also to model distri-
butions that are, for instance, skewed (Pearson, 1894; Pear-
son, 1895; see also McLachlan & Peel, 2000; Titterington,

Table 9
Transition Matrix: Five Classes to Six Classes

Class Class 1 Class 2 Class 3 Class 4 Class 5

1 2 0 8 0 49
2 35 243 0 8 6
3 0 7 0 23 0
4 0 11 0 345 0
5 72 32 2 0 1
6 0 0 137 0 1

Note. Columns correspond to the five-class model and rows to the six-
class model.

Table 10
Variance of Math and Science Factor Scores Explained by Covariates

Class Math c4 Science c4 Math c5 Science c5 Math c6 Science c6

1 0.03 0.05 0.02 0.15 0.00 0.03
2 0.16 0.11 0.01 0.02 0.03 0.04
3 0.04 0.06 0.05 0.08 0.23 0.47
4 0.00 0.03 0.18 0.11 0.12 0.12
5 0 0 0.03 0.02 0.16 0.00
6 0 0 0 0 0.00 0.04

Note. Columns correspond to the factors in the three models (e.g., Math c4 is the math factor of the Class 4 model). c � class.

37FACTOR MIXTURE MODELS



Smith, & Makov, 1985). In the latter case, the components
of the mixture serve merely to capture the skewness and do
not necessarily correspond to clusters of participants within
the population. The assumption that the data are multivari-
ate and normally distributed conditional on class and the
covariates is violated, and the skewed distribution may, in
fact, correspond to a single homogeneous population. An
interpretation on a conceptual level in terms of different
subpopulations would be incorrect. The possibility of an
incorrect interpretation illustrates a more general limitation
inherent to exploratory analyses, namely that the selected
model can only be regarded as one possible way of explain-
ing the observed data. In the context of deciding on the
number of classes, one may, therefore, place some emphasis
on the question of whether an additional class is providing
useful information about the heterogeneity. Characteriza-
tion of the classes and tracing of stable classes as done in
our illustration can be used in conjunction with statistical
measures. Such an approach is not much different from a
classic exploratory factor analysis carried out in a single
homogeneous population in which the interpretability of
additional factors is considered in addition to statistical
criteria.
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