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' Statistical analyses in the social sciences frequently
employ dichotomous variables that are measured in order to
capture, in a more or less explicit ﬁay, some underlying or
latent, quantitative variable. A typical example is a social-
psychological study of attitudes or personality traits. Here,
the response is o¢ften in the form of categorized answers to
guestionnaire statements. Another example is found in edu-
cational testing, with responses to items measuring a certain

ability.

A common practice in such applications is to sum the scores
(often set tco 0 and 1) of the dichotomous items, forming a
"scale", or an "index". This cumpusife is assumed to have
sufficient écale properties, so that it can be used in subse-
quent analyses assuming interval or ratio scales. In edu-
caticnal testing the number of items in such a scale is often
larger than 50, while sociological analyses most often utilize
small sets of items, even as few as 31 or 4. The present paper .

is mainly aiming at the latter types of applications.

In the major part of this paper, we are concerned with
the following broad issue. How well do results from using a
scale of this type agree with results from using the latent
variable itself? Specifically, we will consider this guesticn
in the context of a structural equation mcdel in which we have
a system of linear relations between the latent variables and
other variables involved. The measurement relations between
the latent variables and the dichotomous items are assumed to

fulfill the assumptions of the factor analysis model for dicho-
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tomous variables (see Bock & Lieberman, 1970; Christoffersson,
1975; Muthén, 1977a). fThis is related to traditional latent
trait models of test theory (see e.g. Lord & Novick, 1968;)
see also Muthén (1977a). The structural equation model is a
generalization of a model put forward by Muthén (1976}, whﬁ
treated estimation by the maximum-1likelihood method. This esti-

mator has desirable statistical properties, but as it turns
Out it is computationally exXtremely heavy, Simpler estimation
procedures must be sought, Using summed raw scores of the
dichotomous items, presents one such very simple estimation
procedure. ﬁe will alsc study another comparatively simple
estimator, which uses somewhat more response information from
the items than merely their sum. This uses factor scores,

i.e. we obtain an estimate of 8 certain latent variable for

each cbservation in the sample.

The aim of this paper is to study the consistency of the
two simple estimation procedures (described in more detajl
below). This may be seen as reiating them to the "optimal"™,
but computationally unfeasible maximum-1likelihood estimator.

We will not consider the variance of the estimators. These
are hard to obtain for any general case of the model. Further-
more, the paper is particularly concerned with applications in-
volving a small number of items. In such cases, it turns ocut
that the asymptotic bias of the estimators is so large that

questions of variance are comparatively uninteresting.

-y

<. A general model

Throuchout the paper we will use the notztion ° for

the covariance matrix of the vectors of variables w and z .,

-

Alsc, .., and Cwz @I€ tc pe understocd in an analogous
= WL
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way. The variance of w 1s denoted O,y Denote by u- a
p-dimensional vector of dichotomous items and by z & g-
dimensional vector of guantitative (interval or ratio scaled)
variables. These observed variables will now be related to
the iatent variables n(m x 1) and £(n x 1}, the relations be-
tween which afe of primary interest. Each latent wvariable is
measured either by variables from the u-vector or by variables
from the z-vector. Denote by v(k x 1} the vector ¢of n- and

E-=variables of the first type and by ul(g x 1) the vector of

n= and E-variables of the second type (here m+ n =%k + q).

¥ - a - *
Using 4n intervening p~dimensional vector v , u may be

= e

related to v as

‘ »
Ly 1% Vi 2Ty 4
o, = : [ ot
0 if vy < 11 i
1= 1l 2siwon B WlER
4
v - Av + £ . L 2.2)

Here, =t(p x 1) and A{p x k) contain measurement parameters.

We assume that v and the residual vector ¢ are uncorrelated

= -

and multivariate normally distributed with zero means, and that

e has the diagonal covariance matrix

D = I - diag(AZ A7) , (2.3)

-—

!

where [ . is the covariance matrix of v. This measurement

specification is also used in the factor analysis model for
dichotomous variakles; for a fuller description the reader is
referred to Bock (1%70), Christoffersson (197%5), and Muthén

(197%a).
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For simplicity, we will assume that uy is measured with-

=

out error by 2

' (2.4)

o
i
=

and that 2z has zeroc expectation (the results presented below

-

are applicable alsc when allowing multiple indicators and

measurement errcrs as in Jéreskog 1973, 1976).

For the latent variables under study, we will assume the

linear structural equation system
Bn =TE + ¢ , {2:5)

where E is a m x m non-singular parameter matrix, T 1is a

m X n parameter matrix and ¢ 1is a m—-dimensional disturbance

-

vector, that is uncorrelated with £ and has zerc expectation.

The covariance matrices of £ and ¢ are dencted ¢ and ¥

b e -

respectively. We will assume that the vecteor (n”, £7}) is

o

multivariate normal with zeroc expectation. Thus, {(v7, z7) is

multivariate normal with mean vector zero and covariance ma-

trix
1
=
~VV Euz
(2.6)
E ' ’
~ZV —ZZ
J
savy.

The arrays =T, A, B, ', ¢, and Y c¢ontain the parameters of

- .

the general model. In a given application scme of these para-
meters will have to be constrained in order tc make the model
ldentified.

The specilal case where v =n and u = £ , i.e. where

-

the dichotomous variables only appear as indicators cf endo-




gencus variables in (2.5), was treated by Muthén {1976).
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3. The two estimators

We will. consider the estimation of the parameters of the

general model, included in the structural relations of (2.5):

B, 'y ¢, and Y. 1In this section we define two comparatively
simple estimation procedures for some special cases of the gene-
ral model. The estimators will only be defined for models

where 1, A and L,y 2Fre identified from the marginal dis-

— - -

*
tribution of wu. The p x p covariance matrix of v is

-

(see (2.2})

AL AT + 8 {3.1)

'3
- gy 11 ~

where diag (I) I. Tc determine the metric of v we can

-

either fix one element in each column of A +to a non=zerc

-

| | : value or fix the diagonal elements of Euu.

For both estimators some knowledge is required about T,

-

| =z A and EUU. For the summed raw score estimator we must

- -

know the pattern of loadings in &, although not their exact

-

values. It is toc be assumed that the items of u have bLeen

Pl

| - carefully selected to measure v, S0 that /. has a simple

| | structure with several zero elements. For the factor score

; estimator it is necessary to know all wvalues of Ty ﬁ and E

i  _'; If not known from previous analysis, these parameters can be

% estimated from the sample. This estimation may be carried

L  :{ out by the generalized least-squares factor analysis method of
: .

Muthén (1977a). In this case it will be assumed that the

sampling errors can be ignored, and the parameters will be

e L e

treated as given in subsequent analysis.

T
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in this context we should note the speclial case of the
Jgeneral model, where there are no z°s involved (i.e. k = m+n).
Then we can directly use Euu + 25 estimated from the factor
analysis, in the second step of the estimation. (If in fact
Euu is unrestricted, the structural estimates are directly
cbtained, without loss of efficiency in the second step).

L

For both estimators, the first step of the estimation
pProcedure results in a sample of vectors that are proxies to
the sample of v=-vectors (although in a different metric). 1In
their common second step, the second-order sample moments of
these proxies and of Z are used to estimate the parameters
of (2.5). For simplicity we will here assume that these sample
moments give a sample covariance matrix ([k+g] x [k+g]) that is
positive definite. The computation of the estimates of %,.E,f,
and ¥ from this covariance matrix is then straight-ferward, and
may for instance be carried gut by the maximum=-likelihood method
©f the general LISREL procedure (see Joreskeog, 1973, 1976).
When the parameters of (2.5) are just-identified in terms of
the covariance matrix of {E', E’],i_e. when this matrix is un-

restricted, the maximum-likelihood estimator can be given ex-

plicitly. This will be utilized in some examples below.

2.1. The summed raw score estimator

For this estimator it will be convenient te define s P x k
weight matrix W, such that
y = W, (3.2)

where v 1is the k-dimensicnal vector cf summed raw scores.

-

When ali rows of 4 have only one non-zerc element, the items

—

©f u will be called "pure indicators" of their Fespective la-

tent variakle {(corresponding tc the columns of A} . We mav then

—

assume that the u-alternatives are labelled sc that zll elements




cf A are non-negative, and define the i,3i-th element of W as

1, if lij # 0
[W]. = (3.3}

~"13 0, 1f Ay =0

When some indicators {u-variables) are directly related to
more than one latent variable the choice of W 1is not always
evident. In this paper we will only consider examples where
all elements of A are non-negative (at least after inter-
changing some u-alternatives), i.e. all elements in a certain
row of A have the same sign. 1In this case, it is still re-
levant to define W as in (3.3). However, the derivations
that follow are guite general in that any A can be used to-

gether with any constant matrix W.

-

From a sample of u~vectors, the transformation (3.2) gives
2 sample of y-vectors which may be used in the second step of

the estimation procedure discussed above.

3.2. The factor score estimator

We will consider the estimation of v in (2.2) by a factor
score estimator of a Bayesian type, suggested by Samejima (1969)
for the case of k = 1, and generalized to the multiple factor
case by Muthén (1977b). This estimator requires that the values

cf =, A, and Euu are given. The factor score estimator maxi-

b ] S -

mizes the densitv of the distribution of v conditional on u,

. -

with respect to the elements of v. We will denote the es+imated

)

k=dimensional factor score vector by f. From =2 sample of u”s we
will thus obtain a sample of f"s. In the second step of our

estimation procedure, we note that there is a choice of using Eub

—

as estimated in the factor analysis (assuming that “uy 1S not

known) , or using the sample covariance matrix of f. TIn +his

paper we will only study the factor score estimator for the
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case of k = 1, determining the metric of v through the stand-

i e g

ardization ﬂvu = 1, and we will therefore not adress this issue.

An alternative factor score estimator is the traditiomnal
conditional maximum-likelihood method, see e.g. Lord (1968},
Samejima (1974), Muthé&n (1977b). However, this estimator
(assuming k =1 and loadings of equal sign) is not suit-
able since it yields infinite factor score estimates for the
“extremé'g-respcnSE patterns (1 1...l) and (0 0...0). We
are particularly concerned with situations involwving a small
number of items. Then these extreme patterns are likelv to
have a non-negligible number of observations, which cannot
be used in the second step of the estimation procedure. We
finally note that in the case of quantitative response vari-
ables, the Bayesian factor score estimation approach results
in the ordinary regression method with correlated factors

{see e.g. Lawley & Maxwell, 1971).

i

We will first determine I (k x k) and :yz ik x:gf:

The i,3-th element of Euu (p X p) is

Plu; = 1)+(1 = P(u, = 1}] , if 1 = j
= (4.1}
[Euu]ij
Plyg, = 1,0 = 1) =Py = 1isPa, = )
$E g #a
From the model of Section 2 we find that
2. = 1) = (2]
Pfui } { ¢{z)dz (4.2
iy
and for i # 3
o oo
Pfl.li = i, n.lj =1} = { ,|. ¢{E. ‘E- ;i:}ﬁﬁ (4.3)

4T}EH The bias of the summed raw score estimator s e
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Here ¢(z) denctes the density ©of the univariate, standardized
normal distribution. We use ¢(z; a, B) as the notatiocn for

the density of a multivariate normal distribution with mean

g
vector a and covariance matrix B. In (4.16} the density A

corresponds toc a bivariate distribution where the covariance

matrix E.j is formed from (3.1) with [Z]i. and [L] as

i 13

diagonal elements and [E]ij as off-diagonal elements. In

-

Section 4.1 we will consider cases where M= 1 for k = 1 and

@™ l;*:Then Ai = lj = 1 gives £E]ij = 1. In such rare
cases v, = U?:E v, and P{u, = 1, u. = 1) = P(v » max (7., 1.]) ——
1. i j = Lr 2y
= min IP{ui = 1), P[uj = 1}]. We have now determined Euu’ giving
gyy = g Euuu ) | (4.4)
To determine Eyz we ncocte that conditicnal on v the

model gives

byz = 0 - (4.5)
Then
E[g* §'|E} = Eigig}* Ei§'|y]; (4.6)
where
E(z”|v) = v'I ‘Z (4.7)
s o b T b - :
Put
E(a|v) = = . (4.8)

The i-th element of =,

o

i =Blay 201iv) = [ #lzs A5 v, EI‘.ihQT'dE , (4.9} —
where 31 is the i~th row of 4+ and Eii is the i-th dia-

gonal element of G6. Now,

.




where

Eyz = Ely-2z7) =
= E[E(y + 2" |v) ], (4.10)
g .

where E denotes the expectation with respect to the (marginal)
v
distribution of v. As is seen from (4.10) and (4.6) it re-

mains to determine

E[E{y|v] +v"] = W° E(r-v7), (4.11)
W v

In Appendixlit is shown that

E(r +y7) = DgAL,, - (4.12)

E¢ is a diagonal matrix with ¢{Tij as i-th diagonal

element. It follows that

I = WDAL .

2yz  ~ S¢=%vz (4.13)

To be able toc compare the population moments of the

summed raw scores with those of v, we will transform vy to

Tyt

the same metric as v , creating

* 1/2,.-1/2

¥ =By By A (4.14)
with diag(Z * *} = diag(I ). Putting
1/2.-1/2... o i
E‘-J E}y ?.F Ed:'ﬁ (;f ! A & “'-i.-’? 4, (4.13)
~ |1_1IL).|J -{\,_..li] D __-"1 H‘\ J,fq
it follows by (4.13) that - L: “,1 ~h ;:y
Ey*z = gguz 2 (4.18]

In passing we note that the k xk matrix of correlations
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between y and v is
gyu N Ey E §¢ﬂﬁuu9u
= p~1/2:; p-1/2 , (4.17}
-\ s T poy

again using the result of the Appendix. Here, we recognize

- *
ﬂzuunulfz as the matrix of correlations between v and v,

i.e. the matrix of biserial correlations between u and v .,

e

. L i
General}y, EY y*# Evu and Ey . # L,,¢ l.e. C# I.

This means that any consistent estimator of E?Y and Eyz

will not be a consistent estimator of T and Eu taking

=N =~VZ
the difference in metric into account. Thus, using the sample

moments of y and 2z will generally give asymptotically

gy

biased estimates of the parameters cf (2.5):B, I', ¢, and ¥

- . —_—

Through some examples presented below, we will try to give a

picture of the size of this bias.

We will particularly consider the case where a certain
v=variable has pure indicators. We will delete the index of

this latent wvariable. The situation also includes models

gk %= gy
i VY
o

The bias appears in the covariances between the vy studied

*
and the z"s, and in the covariances between the v studied

with k = 1. In this case we obviously have

o
and any other y “s emploved in the model. By (4.16), (4.17)

the bias in these covariances is

with ¢ dencting the correlation between Yy and v,




_ 1/2 =-1/2
= Guu EEY iéaﬂ}fTi}li' (4.19)

where S 4is the set of u”s considered. If all rows of A have
only one non-zero elémEnt, c is a diagonal matrix with the dif-
ferent p”= on its diagonal. The formula for p in the special case
of equivalent items, was given by Tucker (1946) in a study of test
validity. We conclude that a consistent estimator of the covari-
ances of y* with the other variabkles in the structural relations
of (2.5) will in this case be biased down-ward with a factor 1 -p

(0 < p < 1) relative to the corresponding covariances of v.

4.1 Some examples

A computer routine has been created for the calculation
of I *F* and C. For the computation of (4.3} , this rou-

A

tine uses parts ¢f an algorithm developed by Kirk (1973).

Let us consider the case of k = 1, or similarly the case
of a certain latent variable having pure indicators. We will
first show how ¢ wvaries with the number of dichotomous items
and with the i-parameters. For simplicity we will dencte the
number of items by p. 1In Figure 1, p is given for equivalent
itemg with 1 = g ané A varying from .2 to 1, and for a
common range of p-values (with a different parameterization,

@ similar figure was given in Tucker, 1946, including p = 100).

We have used Euu = ],

INSERT FIGURE 1 ABOUT HERE

TR T S S . S i S S e g e M S S ke i i
T R T LR B B o e e . e . — — — -

"Social - psycholcgical applications frequently have p-

vaiues around 5 and A-values around .6, which by the figure

would result in a downward covariance bizs of azbout 23%.
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Consider for instance the case where kX = 1 and the v=-variable

appears as the only endogencous variable of (2.5)

VoE Y2, + TEZE B e o quq ol e (4.20)
Here,
. I 1g 4.21
E i'zz-.i."u ' I': * :I
*
where Yy~ = {Tl, Yorenns Tq}' In the regression ¢f v on z,

we have (see (4.16)}

Y = s (4.22)
With 5 indicators ¢f v and t =0, A7 = (6, .6;..+, .8), Uuu==l.

the downward asymptotic bias in a consistent estimator of the
regression coefficients will thus be 23%. The portion of "ex-
plained"™ wvariance in v, T'EEET, will be estimated t¢ an approxi-

=

mation of only 59% (i.e. DE} of its true value.

From Figure 1 we see that for given T-values, p is an in-

creasing function of the A”s throughout the common range of

1

A. The fact that p decreases for A°s near 1 has been called
"the attenuation paradox"; see e.g. Lord & Novick (1968, p 344).
If we accept 10 - 15% or less as a negligible size of covariance
bias for the model of (4.20), we note that we still need a-

%

round L5 items or mere for the most common range of i, say

0.4 « 4 < 0.8,

= —_—

o a# =
Mﬁ

We will now give an idemtificattren of how o varies e

with . We recall that large peositive {(necative] values of
T are associated with items for which the probability of ob-
serving u = 1 is small (large). We will use egqual locadings

set tc .6, which will be emploved as a standard value. First,
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consider p = 5; With | s Er Figure 1 gives p = .769 (as was
found above). BAs a standard example of unequal 1=, these
will be evenly placed aleng the v=scale, in the sense that

the area between the corresponding p + 1 intersections of the
noermal curve are of equal size. Thus, with E’= (- 1.00, - .50,
.00, .50, 1.00) we obtain p = .741. To illustrate cases of
T°s covering only one end of the v=scale, we ma% use E”= (.00,
.30, .50, 1.00, 1.00}). Here p = .730. The examples indicate
that p decreases with increasing distance of the 1”5 from
the zero mean of v. Consider the case of a somewhat larger
number of items, say p = 8. Here, T =0 gives p = ,833.

With evenly distributed t”s in the sense used above, we have

I‘= (=1.25, =-.75, -.45, -.15, .15, .45, .75, 1.25) and p = .809,.

With = (.15, .15, .45, .45, .75, .75, 1.25, 1.25) p=.817. We
note that in all cases the p-values differ only slightly from

the value cobtained with T = 0.

As an example with different A”s, consider the case of
P=5, 1=0, and 1" = (.4, .5, -6, .7, .8). Here, p = .770,

l1.e. about the same as with equal A”s with the value .6. For

(87

P K2 Gy =85 o0 o8y 8 T w1y 8 e Rave

8, 5 9 an
¢ = .833, as in the previous exampie with equal J"s. As a
slight digression, let us consider using different weights

in W, with weights set equal tc the icadings. For the pre-
vious twoc examples we then obtain r = .788 and p = .B43, re-
spectively. Furthermore, if we have 5 items with Zeroc 71 s and
equal loadings of .6, and add 5 items with zeroc +-= and egual

loadings ©f .3, p enly increases from .769 tc .773. Weighting

with the loadings gives an increase to .797.

This collection of examples also serve the rurpose of de-
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%
i
g
£

monstrating ‘the usefulness of Figure 1. We see that the p-
values obtained from this figure can be used as good approxi-
mations in cases where we do not have equivalent items with

T = 0, and where we use somewhat different weights.

Let us now. turn to some examples wﬁere k = 2. MAssume that
12 items are available to measure the two latent variables and
that the first 10 of these load with .6 on only cne of the la-
tent variables, 5 items on each variable. The remaining 2
items load equally on the latent variables, and we will use
the loading .35 as the common value, so that the residual
variances of ¢ are about equal for all items. Let us further
assume that 1t = 0 and that we have standardized the variances

of the latent wvariables to one, with a correlation of .S.

Given this, we can study the difference between Ey‘y* and

Euu' and between C and 1I. Using the first 10 items we
cbhbtain
l1.000 : . 769 000
L% % = C = (4.23)
2 A - '
. 297 1.000 000 769
and using all 12 items,
[1.000 ] .732 .139]
& R f = | (4,24
¥ | S | (428
| | : ;
-581 1.000 SR L T332 1.

We can now pose the gquestion: To obtain the smallest bias in
the structural ccefficients, should we utilize only the first
10 items, obtaining two sets of pure indicators, or should

we make use of all 12 items? 1In fact, the answer depends




- 1f/ =

on the structural model. Consider the following two simple

models. In Model 1,

z = [y, ylv+z, (4.25)

=

and in Model 2

- (4.26)

i<
|
o]
iy
L]

In both cases we standardize the variance of =z to0 one. De-

S

note by Yy  the vector corresponding to [y, y]~, when using
* .
Y instead cof wv. For the first model we have, see (4.16),

-

* -1 (4.27)
= T % % .
X ‘v y vz
and for the second one,
E = Eﬂuz ) (d4.,28)

This implies that for Model 1 the summed raw score estimator
will give a down—-ward bias of 11% in the estimation of v, when
using only the 10 items. For Model 2 these items give a down-
ward bias of 23% (as was cbtained for the model of (4.20)).
Using all 12 items, there is a 17% down-ward bias for Model 1
and a 13% down-ward bias for Mcdel 2. Thus, the relation be-

tween the sizes of bias is reversed between these twe models.

4.2. Correcting for bias

In the previous examples we have found the bias in the

estimates of the structural coefficients, using v instead

£

cf v, as different functions of the elements of

-

3 kS - i~
v alnc -

ti

~a

These matrices contain the unknown elements of 1, 4, and

e B
~ ERVAY

In Section 3 it was mentioned that these elements could be cep-

14

Sistentiy estimated (when they are not known: by the method of




Muthén (1977a}. This suggests that we may use these estimates

to carréct for the bias in the sample covariance matrices gYY

and S .
~VZ

Consider the corrected sample covariance matrix

- *yi,--]/za_i,._}i .h‘jé
?Hz =§_-l-§3f?_' Ej E?.r E" E‘v’ ES S{}E}H-EE}

where we have assumed that the correction matrix C is non-

o~

singular (this will always be the case for pure indicators,
since then C is diagonal with the different p~”s on its dia-

"y

gonal). Here, C is created.from the estimated 1, A, and

o — -

L , - a
Euv. From (4.15) and (4.13) it follows that SFZ is a con-

sistent estimator of Euz' when transformed to the metric of

b

vV o. {(In actual practice, we would usually not change the met-~

ric of vy; i.e. we would directly use S:z}_

When k > 1, we must also take the bias in the covariances

of y 1into account. We can then use Euu' With s;z and

=

L,, n the same metric, and adding S,,+ we hopefully obtain
a positive definite covariance matrix, which is a consistent
estimator of the covariance matrix of (v~ z”). This may then

be used to cobtain a consistent estimator of the structural

parameters.

. The bias of the factor score estimator

In this section we will compare the bias of the summed
raw score estimator with that of the factor score estimater.
The estimator of the factor scores is defined as the minimum
cf & certain function {(see Samejima, 196%; Muthén, 1977%;,
and cannot be given explicitlv. Due to this, we will in-

vestigate its properties by means of a2 small Monte Carle
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study. This will be limited to the case of one latent vari-
able. Analogous to Section 4, we will mainly concentrate on
the covariance between the latent variable v and another
?ariéble in the model, z. Thus, we are particularly inter-
ested in the ﬁias of Ogy» We will alsc report results per-
taining to ‘Hgs l.e. the mean of f£, Geger and the regression

of z on £,

S
Yo = Tgs%¢; - (5.1)

The Monte Carlo study was designed in the following way.

Given certain values of ¢ J..t G ., P, T, and A (a column

zz' “vuz vy

of A) the (p + 1) x (p + 1) population covariance matrix of

: ra J i
(v , z) was created; see Sections 2 and 3. We used the values

—

a = = = = i ]
i il Guz 5, and Guv l; thus, in this case ﬁuz is

a correlation coefficient. From the general model we find
* : »
that the v °s have unit wvariances, the covariance of vy
L
and u§ is lilj’ and the covariance between vy and 2z 1is

Aiﬂuz. Using this covariance matrix, 50 samples of 2000 ran-

dom, multivariate normal vectors were created. The first D
E

-

variables of each random vector, corresponding toc the v “s,

were dichotomized at <7, creating u as in (2.1). Given the

. —

pattern of u, and given v and &, f was computed with the

— e

T o

Bayes factor score estimator. This resulted in a pair of

and z-values for each random observation unit.

We will use a "curl"-notation for the means of the differ-

]

ent characteristics, taken over the 50 values. Thus, Cepe Qe-

notes the mean of the 50 wvalues of Seee As 1t turns out, c,..
£ - A
differs from Guw. Since the metric of the latent variakble is

arbitrary, this is nc deficiency. However, as in Section 4,
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we will use a transformation

= Ogr £, (5.2)

s¢c that f and v are (approximately} in the same metric.

Then G;*z = Ggifzﬂfzr an approximation to the correlation be-

%
tween £ and z. The standard error of Cg¢, 15 equal to
UE%EE multiplied by the standard error of T, (i.e. Oeg is

here treated as a constant, approximating aff].

~Let us now consider some of the examples that were used
in connection with the summed raw score estimator. We will
limit the study to tﬁree examples with p = § and three ex-
amples with p = 8. It is for p-values of this magnitude that
it is possible to obtain any substantial reduction of bias
relative to using the summed raw scores. As a check of the

precision of the Monte Carlo procedure, the summed raw scores

were alsc calculated from the dichotomization of E*' In all
the examples rePﬂrted, the calculated ;Y*E differed less than
.004 from Gy*z‘ In Table 1 the results are displayed. We
recall that af‘z shall be compared to Bee: 5 {88

O T T T ———

INSERT TABLE 1 ABOUT HERE

Srm============z==========

it 1s somewhat surprising tc note that in none of the examples
does the factor score estimator perform distinctly better than
the summed raw score estimator. The additional information

used by this estimator, giving a considerable extra computational

work, seems to give & very small difference in bias, if anv at

all. Judging from the sample standard errors of the o_*_ "s,

4L s

LA
only one of these values &#¥6 significantly different from B 00
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e

e

{the sampling distributions of the sf*z’s are approximately

normal). The largest differences occur for cases with unegqual

loadings.:

We can note that vy, . is comparatively close to the

e R

*
°f 2
It appears that the bias in Oecr Lo some extent balances the

correct value of .5, in all cases studied {(note that Yg, = Y
bias in Og, It is interesting to note that this holds true
exactly for the case of quantitative variables, using the re-
lated regression method (see Tucker, 1971). BAlso for this
method, the covariances of the estimated factor scores with

other variables differ from the corresponding covariances of

the true factor scores (Tucker, 1971).

€. Summary and discussion

We have shown that the use of summed raw scores to esti-
mate structural equation parameters can give grossly biased
results when the number of items is small. On the other hand,
when each latent variable -is measured by a larger number of
items, say around fifteen or more, this procedure may work
quite well with regard to bias. Due to its simplicity of
calculaticn, the method of using summed scores will continue
to be attractive. We have therefore attempted to give a pic-
ture of how the bias varies under different conditions, in-

dicating when the bias is small.

With one latent variable, the bkias of the factor score
estimation procedure is close tc that of using summed scores.

Then the latter will probably be preferred on grounds of sim-

plicitvy,
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There is also the possibility of correcting the sample moments
of the sﬁmmed scores, as discussed in Section 4.2. 1In this
correction we utilize parameter values that .are also necessary
for fhe calculation of the factor scores. Even with correction,
the summed scores are simpler to calculate, given a routine of

the type used in Section 4.1.

In this paper we have only considered the bias of the
estimators. Thus, questions of standard errors for the esti-
mates and statistical tests of model fit have not been dis-
cussed. Such information is important in the evaluation of a
model. To conclude, we note that for the type of models dis-
cussed, there is still a need to develop estimators that are
computationally feasible, and yet statistically acceptable.
This iSIEEPEEiﬂllY true for models with a small number of
items. It is desirable that such an estimator also produces

standard errors and a test of model p e iy

%gﬂi L35 fo 9




APPENDIX

In this appendix we will use the same notation as in the
main part. of the paper. Using standard results on conditional

normal distributions, we find that

Ay

(A=1) ¢(2; AW, B} + ¢ (w; a, F) =

B

= ¢(z; Ae, B + AFA™) - ¢l."r:r; Bioemt Ew_z} ;

where
(A=2) Hyeg = € +FAT(B + gg@‘}'l * {z - RAe) ,
(A~3) L. =T BAT(B + aEa")"L AP .
~W*Z = - - == S~
Dencte by
-
] £(w)dw

=00
o

a multiple integral which has the order of the dimensicon of w,
upper and lower limits all equal to positive and negative in-
finity, respectively, and the vector-valued function f{w) as

integrand. Consider the i-th row (1 =1, 2,..., p) of

E(w - E‘} of (4,11):

"

W
v T Yy = . . o e
E{Tri _"""_. : D- I ¢'{3r :l E;Elljdz E
v = Ty
(A=) *0(vi 0, I )dv.

Changing the order of integration between 3z ané v, and
using (A=-l}, (R-2), {A-3), we finé

o
- P S = r - - 3 - I
(A=5] Efni v ; pi{z)- z i tvudz ;

.




where we have made use of the fact that ﬂi. = ATE A,= 1,

for all i~ s.

1 iyl

Utilizing the expression for the mean of a

truncated normal distribution (see e.g. Tallis, 1961}, we

obtain '

(A=6)

ﬁ‘“i'"i.] = d(ry)e AY ¢ Ly

This gives the result of (4.12).
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TABLE 1

Monte Carlo results for six setzs of j.tara-.n.'ls,ﬂlE

Me Ogg LT e U,
F = 5! I = E.r ‘3':# = {.E, lﬁl-li-l-,f -.b)1: .

.001 «. 235 a1y . 388 . 385
(.002) (.002) (.004) {.003)
p =5, I'= (=1.0, =.5, .0, .5, 1.0L3f R R T 1

000 11 .520 . 372 . 370
(.002) (.002) (.004) (.003)
p =5, Eﬂg,§’= Cally' 2By wlBs &35 a8):
-.901 +D25 . 5540 . 399 . 385
(.003}) {.001) {.004) {.003)
F - E'f E = E; E‘ - {-E; rE‘;i-tp ..E]:

.003 .638 .519 .414 417
{.003) {.002) {.003) (.004)

.401
(.003)

iy o7,

.421

p =8, I' = (=-1,.25, -.75, -.45, ~-.15, .15, .45,
5’ SR A, - | [
.003 .613 + 512
(.002) {.002) {.004)
p = 8, o 9’ ir = (.4, .5, .5, .6, .6,
001 .628 .531
(.002) (.002) {.003)

(.0023)

« 15, 1,29),

.404

.8) ¢
.417

* Standard errors in parenthesis.




FIGURE 1
The correlation between the summed raw score

and the latent wvariable.
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