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Abstract 

In both the popular press and scholarly research, digital information is persistently dis-
cussed in terms that imply its immateriality. In this characterization, the digital derives 
its power from its nature as a mere collection of 0s and 1s wholly independent from the 
particular media on which it is stored—hard drive, network wires, optical disk, etc.—
and the particular signal carrier which encode bits—variations of magnetic field, volt-
ages, or pulses of light. This purported immateriality endows bits with considerable 
advantages: they are immune from the economics and logistics of analog media, and 
from the corruption, degradation, and decay that necessarily results from the handling 
of material carriers of information, resulting in a worldwide shift “from atom to bits” as 
captured by Negroponte. This is problematic: however immaterial it might appear, in-
formation cannot exist outside of given instantiations in material forms. But what might 
it mean to talk of bits as material objects? In this paper, I argue that bits cannot escape 
the material constraints of the physical devices that manipulate, store, and exchange 
them. Such an analysis reveals a surprising picture of computing as material process 
through and through. 

1. Introduction 

By some accounts, the digital age fundamentally differs from all previous information 
epochs insofar as information has finally achieved what it has aspired to throughout 
history, namely, unburdened itself from the shackles of matter. As a mere collection of 
0s and 1s, digital information is independent of the particular media on which it is 
stored—hard drive, optical disk, etc.—and the particular signal carrier which encode 
bits, whether magnetic polarities, voltage intensities, or pulses of light.  

This purported independence from matter would have two distinct and important con-
sequences: (a) digital information can be reproduced and distributed at negligible cost 
and high speed, and thus, is immune to the economics and logistics of analog media; (b) 
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digital information can be accessed, used, or reproduced without the noise, corruption, 
and degradation that necessarily results from the handling of material carriers of infor-
mation. Immateriality, then, is fundamental to the ability of the digital to upend the 
analog world, the reason why any media that can be digitized or produced digitally will 
eventually succumb to the logics of digital information and its circulation through elec-
tronic networks—an argument powerfully encapsulated by Negroponte’s (1995) slogan, 
“from atom to bits.” 

Such a characterization is quite problematic. If bits are not made of atoms, what could 
they possibly be made of? In this paper, I argue, as common sense intuitively suggests, 
that bits are necessarily both logical and material entities. Furthermore, as the theoretical 
and empirical material presented in this paper will demonstrate, computing systems are 
suffused through and through with the constraints of their materiality. I thus use mate-
riality as an entry point in the analysis of the computing infrastructure, the infrastruc-
ture that already mediates a breathtaking proportion of social relations — from educa-
tion and healthcare to the search for romantic partners.  

The computing infrastructure — e.g., operating systems, networking protocols — is 
precisely tasked with relieving users and programmers from the specifics constraints of 
the material resources of computation: within a given platform, applications run re-
gardless of processor type, storage media, or network connection. Yet, this abstraction 
from the material can never fully succeed. Rather, it stands in dialectical tension with 
the evolution of these material resources and with the efficiency trade-offs their abstrac-
tion requires. Materiality then is a key analytical category from which to track the com-
plex positioning of market players as they respond to fundamental shifts in infrastruc-
ture —wireline to wireless, single to multicore, desktop to cloud and mobile. Indeed, 
the characteristics of this infrastructure matter a great deal, since it determines the base 
material conditions under which applications, services, and devices will perform 
(Engler & Kaashoek, 1995). 

Furthermore, a focus on materiality highlights that computation is a mechanical process 
based on the limited resources of processing power, storage, and connectivity. Indeed, 
the computing professions devote much of their activity to the management of these 
limitations. In mediating access to the physical resources of computation, infrastructure 
software must also manage the competing demands users place on them. A material 
analysis foregrounds how systems design must necessarily engage in the oldest political 
problem in the world: the allocation of scarce resources among competing stakeholders. 
While the shift to cloud computing, the defining infrastructural work of our time, is 
typically framed either in the language of technical rationality or that of the information 
age’s infinite frontier, materiality provides for an analysis of infrastructure building in 
terms of the politics of resource allocation. Indeed, a focus on materiality suggests a 
profound disconnect between such political work and the self-portrayal of computing 
science as primarily concerned with the design of efficient abstractions (e.g., Wing’s 
(2006) “computational thinking”). 
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There is thus much to be gained — theoretically, methodologically, empirically — from 
approaching bits as materials objects. Yet, various factors, including the trope of imma-
teriality, have resulted in inadequate theorization of this fundamental dimension of in-
formation systems. Given this, the argument that follows will require delving into the 
nitty-gritty of the technical worlds where the constraints of that materiality are con-
fronted. This exploration will take the form of technical histories of major system ab-
stractions — the von Neumann machine, the file, the packet — that will retrace effi-
ciency trade-offs resulting from shifts in the material basis of computation. Such design 
histories reveal the digital world’s independence from material as permanently unset-
tled, under constant pressure to renegotiate the exact terms of that liberation. 

This then is a paper about stuff, the stuff of computation (Miller, 2009). I begin by trac-
ing the development of immaterial trope and its impact on professional practice, and 
review recent attempts at analyzing the materiality of the digital. Building on this prior 
work, I focus on the design strategy of modularity functions as the core mechanism for 
abstracting, structuring, and distributing the material resources of computation, at the 
cost of efficiency trade-offs. Three empirical sections then illustrate the historical evolu-
tion of such trade-offs in the context of major computational resources — processing, 
storage, and connectivity. I conclude by discussing the implications of this argument for 
historical studies of computing, systems design, and governance. 

2. Information, Immaterial 

The trope of immateriality is not a new phenomenon by any measure. While William 
Gibson’s Neuromancer (1984) precipitated the term “cyberspace” into public conscious-
ness, it also reiterated for a new set of technologies long-standing themes in the history 
of electronic communications, dating back at least to the telegraph: “the promise of tele-
graphy is metaphysical: by annihilating space and time, it allows humankind to escape 
physical limitations. The power and ubiquity of electricity are metaphorically attached 
to a newly disembodied consciousness.” (Rosenheim, 1997) Networked computers have 
provided renewed valence to this promise, as articulated with great lyrical force in the 
defining mid-90s manifesto of the Internet, Barlow’s “A Declaration of the Independ-
ence of Cyberspace.” (1996) Barlow placed immateriality at the center of his analysis of 
cyberspace as a place altogether distinct from the material world:  

“Governments of the Industrial World, you weary giants of flesh and steel, I come from 
Cyberspace, the new home of Mind. […] Your legal concepts of property, expression, 
identity, movement, and context do not apply to us. They are all based on matter, and 
there is no matter here.”  

Less lyrical but equally influential, Negroponte’s Being Digital (1995) is also structured 
around the liberation of information from matter. Contrasting the costly and laborious 
movement of physical goods with “the global movement of weightless bits at the speed 
of light” (p. 12) leads him to conclude that, in the digital era, “the medium is no longer 
the message” (p. 61).  
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One might be tempted to dismiss Barlow’s and Negroponte’s manifestos as partially 
guided by an irrational exuberance that has since been tempered by, among other 
things, the crash of the dot com economy at the turn of the millenium. Yet, for a number 
of influential scholars, the immateriality of digital information continues to serve as the 
conceptual linchpin for their analysis of the widespread impact of information tech-
nologies.  

It is central, for example, to Viktor Mayer-Schönberger recent and widely discussed es-
say on the value of forgetting, Delete (2009). He argues the negligible cost of preserving 
and accessing information threatens to usher in an era of “perfect remembering,” with 
dire consequences for the fundamental human cognitive process of forgetting. The ar-
gument is predicated on an analysis of digital information as superior to all previous 
media “because it lacks the noise problem” (p. 57). This purported ability to escape the 
decay wrought by use, reproduction, or time strongly shapes Mayer-Schönberger’s sub-
sequent analysis of potential remedies to the end of forgetting (Blanchette, 2011). 

It is also central to Blown to Bits: Your Life, Liberty and Happiness after the Digital Explosion, 
a widely praised guide to the information age co-written by MIT’s Hal Abelson, Har-
vard’s Harry Lewis and Ken Ledeen (2008). Again, the analysis is structured around 
binary encoding as the ground zero of information representation: “Bits are bits, 
whether they represent movies, payrolls, expletives, or poems. Bits are bits, whether 
they are moved as electrons in copper wire, light pulses in glass fiber, or modulations in 
radio waves. Bits are bits, whether they are stored in gigantic data warehouses, on 
DVDs sent through the mail, or on flash drives on keychains.” (p. 294) The impervious-
ness of bits to their material embodiment is highly significant for designing appropriate 
information policies. For the first time in history, we are in a position to enact regula-
tions that do not depend on the historical accretions that have heretofore bound to-
gether media and content:  

“Law and policies regulating information developed around the technologies in which 
that information was embodied. The digital explosion has reduced all information to its 
lowest common denominator, sequences of 0 and 1s. […] The universality of bits gives 
mankind a rare opportunity. We are in a position to decide on an overarching view of in-
formation. We can be bound in the future by first principles, not historical contingencies.” 
(p. 294) 

In certain areas of professional practice, the question of digital materiality will play a 
fundamental role in delineating the shape of things to come. While records managers 
must deal with the shift to electronic documents, the rules that govern the admissibility 
and weighing of documentary evidence in courts were largely designed around the 
technologies of the printed world—paper, ink, handwritten signatures, stamps, etc., 
with the consequence that long-standing evidential concepts of authorship, originals, 
integrity seem altogether inapplicable to the world of digital records. In a recent treatise 
on the question, George Paul (2009) argues that reform must necessarily proceed from 
the recognition that electronic documents are made from entirely new stuff:  
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 “Writings in the digital realm are different. They do not depend on the alteration of mat-
ter. Such records are very close to ‘pure information,’ and exist by virtue of a mere suc-
cession of the differentiation of 1s and 0s, distinguished by electricity flowing in machine 
systems. In writing today we deal in pure information objects, unfettered by matter. They 
can be whisked or shaken or rearranged in an instant.” (p. 19) 

This immateriality implies that entirely new methods for establishing authenticity must 
be deployed: “Because digital records do not depend on the alteration of matter, a proc-
ess of inspecting them is not a reliable paradigm for testing authenticity.” (p. 21) The 
appropriate paradigm, Paul argues, is one based on mathematical algorithms, crypto-
graphic digital signatures, which will offer new (and superior) guarantees for integrity 
and authorship. 

The above examples thus suggest that the trope of immateriality is more than a conven-
ient metaphor information age pundits reach for to cut through technical complexity. 
Rather, it clearly plays an central role in several important arguments over the implica-
tions of our current society-wide shift to digital information. In fact, Hayles (1999) ar-
gues it is fundamental to the project of posthumanity, a worldview that informs and is 
articulated within the various scientific disciplines and literary genres that claim cyber-
netics as their intellectual ground—including artificial intelligence, robotics, artificial 
life, science-fiction, etc. At the heart of this project lies a fundamental assumption, that 
informational patterns (including human consciousness) are ontologically superior to 
their (accidental) material instantiations (including the human body); a promise, that 
information “can be free from the material constraints that govern the material world” 
(p. 13); and a vision, the implication that “if we can become the information we have 
constructed, we can achieve effective immortality.” (p. 13) Digital information systems 
provide a particular valence to this project, given that 

“… reality at a fundamental level is seen as form rather than matter, specifically as infor-
mational code whose essence lies in a binary choice rather than material substrate. […] 
The assumption that form occupies a foundational position relative to matter is especially 
easy to make with information technologies, since information is defined in theoretic 
terms […] as a probability function and thus as a pattern or form rather than as a materi-
ally substantiated entity.” (pp. 232-232). 

By all measures then, philosophical commitments to immateriality should not be un-
derestimated. But even if a critical exercise were to corral the rhetorical efficacy of such 
a position, what alternative models exist? If digital information is not immaterial, in 
what ways is it material? What relevant physical constraints should a theoretical model 
of the materiality of digital information capture? Understandably, it is only recently that 
scholars have begun seriously investigating analytical frameworks that might provide 
appropriate answers to these questions.  

3. Information, Material 

A direct consequence of the prevalence of the trope of immateriality is the dearth of re-
search on the topic, and it is only recently that researchers have self-identified as explor-
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ing the materiality of digital information. Several of these researchers have been in-
spired by previous work in the field of descriptive bibliography, work that sought to 
link the material conditions of the production, expression, and reception of printed ma-
terials to their production of semantic meaning (McKenzie, 1985/1999). For example, 
Drucker (2009a) notes “the stripping away of material information when a document is 
stored in binary form is not a move from material to immaterial form, but from one ma-
terial condition to another.” The task then is to map how the particular material condi-
tion of electronic media makes possible or impossible new potentialities for reading. In 
a similar vein, Hayles (2002) has explored the theme of materiality as manifested in elec-
tronic literature, arguing that literature has traditionally conceived of the body of the 
book, of the writer, and of the reader in terms of “assumptions specific to print,” and 
that electronic media brings them together in new configurations, providing us with 
“an opportunity to see print with new eyes.”  

Knoespel and Zhu (2008) suggest the popular characterization of cyberspace as “an 
ethereal escape from the filthy, hopeless ‘meat’ world” is inherited from a Cartesian 
dualism that posits a strict dichotomy between language (spirit) and the material world. 
Moving beyond such “romantic notions of immateriality,” they suggest computing sys-
tems are characterized by a “continuous materiality,”  

“ … a wide spectrum of materiality activated by a hierarchy of codes that moves from 
‘lower’ machine code to ‘higher’ readable computer languages and to codes in general 
(structural, legislative, social, cultural, etc.). Each level of code engages natural language 
and the physical world in different ways, varying from the shifting voltage of computer 
circuits to our everyday activity. Altogether, the hierarchy of codes constructs a field of 
diverse materiality that is continuous and interconnected.” (p. 236) 

Continuous materiality accounts for the materiality of computing on several levels: 
through the immanence of embodied experience in language, manifested by the dual 
registers through which code operates. Instructions to machines (open window, cut and 
paste) are also apprehended by humans via the metaphorical function of language. 
Even while programmers mostly operate within strictly positivists conceptions of lan-
guage, computer code creates relationships among multiple symbolic systems, those 
necessary to move the cogs of the machine, and those necessary for those operations of 
the machine to be situated within language, and thus, social order. At the same time, 
multiple kinds of computer code co-exist within the computer, each potentially mediat-
ing among different codes pertinent to different social systems.  

In a similar vein, Warner (2009) has argued that the linguistic concepts of syntagm and 
paradigm, and the information theoretic concepts of message and messages for selec-
tion are derived from a common material basis, that of the line and the surface. He sug-
gests that “understanding the material basis for concepts from linguistics and informa-
tion theory, and locating them precisely in relation to current material realities, might 
then yield a basis for a fuller understanding of the effects of computational procedures, 
themselves constrained by a common and inherited material reality.” (p. 198) 
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Kirschenbaum (2008) has offered the most original and sustained investigation of the 
physical constraints that obtain on digital media, through his extensive analysis of the 
mundane, the ubiquitous, and yet opaque and mysterious hard drive, the inscription 
workhorse of the computing age, and yet, until Kirschenbaum’s, a device bereft of sus-
tained analysis.  

His first line of attack concerns the curious discrepancy existing between the literary 
critics’ view of electronic writing as ephemeral, fundamentally unstable, forever malle-
able and that of computer forensics experts, whose livelihood is predicated on the re-
covery of the numerous traces digital objects leave behind, even after their presumed 
deletion. The confrontation rapidly exposes the influence of a certain “media ideology 
of electronic text … the notion that in place of inscription, mechanism, sweat of the 
brow (or its mechanical equivalent, steam), and cramp of the hand, there is light, rea-
son, and energy unleashed in the electrical empyrean.” (p. 39) Kirschenbaum’s project 
then is to define “an approach capable of accounting for the ways in which electronic 
data was simultaneously perceived as evanescent and ephemeral in some quarters, and 
remarkably, stubbornly, perniciously stable and persistent in others.” (p. 27) His answer 
rests on the distinction between two types of digital materiality, “forensic” and “for-
mal.”  

Institutions with highly detailed protocols for controlling the creation, access, and even-
tual disposal of sensitive, classified information have been long aware that deleting 
digital information from hard drives requires more than simply moving it to the trash 
icon. Various methods and procedures have been developed to combat the phenome-
non of “data remanence,” the residues left behind by the physical processes used to 
write and erase digital data on electronic storage media — from overwriting to media 
destruction. Because the performance of these processes varies from one inscrip-
tion/deletion to the next — due to variations in the magnetic substrate and the exact 
positioning of the read/write head — earlier data may still be accessed in the form of an 
“erase band” along the edge of magnetic track. Thus, in ways that points to its shared 
condition with other media, the storage of digital information exhibits specific con-
straints on “reversing or obscuring what are tangible interventions in a physical me-
dium.” (p. 60) “Forensic materiality” thus captures the application of the principle of 
individualization, “the idea that no two things in the physical world are exactly alike” 
(p. 10) to digital storage. As Kirschenbaum points out, “that the scale here is measured 
in mere microns does not change the fact that data recording in magnetic media is fi-
nally and fundamentally a forensically individualized process.” (p. 63) And it should 
come as no surprise that the social adoption of a new writing technology gives birth to 
“an eruption of tools and techniques to fix, expunge, and recover their meaning-bearing 
marks and traces.” (p. 71)  

Kirschenbaum’s concept of “formal materiality” encompasses two different dimensions. 
The first suggests one possible answer to the question of how digital writing so com-
pelled academics to uncritically characterize it as free from the material. Borrowing an 
insight from Daniel Hillis (1999), Kirschenbaum notes how computers’ ability to con-
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tinually perform error-correction enables them to present digital information as “noise-
less.” As he notes, “computers are unique in the history of writing technologies in that 
they present a premeditated material environment built and engineered to propagate an 
illusion of immateriality.” (p. 135) The second dimension of formal materiality points to 
file formats and the structuration they impose on digital data as powerful constraints on 
mutability of bits — for example, in the case of JPEG images, different levels of com-
pression result in images perceptually indistinguishable, but from which some informa-
tion has been irretrievably lost. Similarly, the encoding of data in a file format enables 
or disables specific kinds of computational manipulation — e.g., a TIFF image of a 
document does not support search in same way a text file will. Thus, despite the flexi-
bility and mutability of digital information, “the play of code is not always infinitely 
fungible and arbitrary—transformations are not always reversible, nor are all transfor-
mations always possible and achievable.” (p. 149)  

In spite of these insights, scholars still find it difficult to characterize the digital in mate-
rial terms. For example, Leonardi (2010) notes the material properties of artifacts are 
those that enable and constrains them in ways that “simply cannot be overcome,” e.g., 
the opacity of wood. Proceeding from the premise that “a digital technology like a word 
processing program is an artifact that is not comprised of matter,” he then concludes 
that “moving away from linking materiality to notions of physical substance or matter 
may helps scholars of technology integrate their work more centrally with studies of 
discourse, routine, institutions and other phenomena that lie at the core of … social the-
ory, more broadly.”  

Building on the works outlined above, I propose in the following sections an analytical 
framework that may in fact integrate digital materiality with a broad range of social 
scientific disciplines. The primary mechanism that mediates and structures this materi-
ality is the design strategy of modularity. 

4. Modularity and layering 

Information systems can be divided into three major types of components: applications 
that provide services to users, usually according to some task model or metaphor (e.g., 
“the desktop,” “word processing,” “show slides”); infrastructure software that mediate 
applications’ access to shared computing resources, i.e., the physical devices that provide 
processing power, storage, networking. Infrastructure software may be located in oper-
ating systems on commodity computing devices, embedded in hardware (e.g., firm-
ware), or execute on specialized computers (web servers, routers, etc.). The interoper-
ability of applications, infrastructural software, and devices is an extraordinary engi-
neering achievement. The sending of a simple email over the Internet requires the cor-
rect functioning of thousands upon thousands of heterogeneous material and logical 
components, connected together in a network of staggering complexity. Such a system 
must be able to accommodate, among other things, growth in size and traffic, technical 
evolution and decay, diversity of implementations, integration of new services to an-
swer unanticipated needs, emergent behaviors, etc. The solution adopted by the soft-
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ware and hardware industry to manage this complexity is the design strategy of modu-
larity, a strategy with widespread application in manufacturing (from automobile to 
disposable razors), architecture, and education (curriculum design).  

Modularity is a strategy for designing the architecture of an artifact, in particular, the 
relationship of its function to its structure (Ulrich, 2007). The design of a disposable 
blade safety razor, for example, realizes two distinct functional requirements, cutting 
hair, and hand manipulation (1). Safety razors are typically structured in two separate 
components (or modules), the blade and the handle, each implementing a distinct func-
tional requirement. The blade and handle components are de-coupled, insofar as a 
change in one component (gradual wear of the blade) will not result in a complete 
breakdown of the artifact, since it can be replaced. A modular architecture is one that 
realizes a one-to-one mapping between functional requirements and components, as 
well as de-coupled interfaces between those components (Ulrich, 2007).  

Such separation of functional specification from implementation has multiple advan-
tages for computing systems design. As early as 1959, McGee noted that pressures to 
extract maximum value from expensive data processing equipment led programmers to 
“hand-tailor their programs,” rather than developing more general techniques. This 
resulted in “first of all, a prodigious outlay of programming time; and secondly, a run-
ning program which is ‘chiseled in granite’ and which effectively defies any attempts to 
modify it at a later date” (McGee, 1959). 25 years later, Parnas argued that modular de-
sign provided just the solution to this vexing issue:  

“it should be possible to make a major software change as a set of independent changes 
to individual modules, i.e., except for interface changes, programmers changing the indi-
vidual modules should not need to communicate. If the interfaces of the modules are not 
revised, it should be possible to run and test any combination of old and new module 
versions.” (Parnas, Clements & Weiss, 1984, p. 409) 

In addition to providing a strategy for managing change, modularity also reduces sys-
tem complexity by division of labor: modules can be assigned to different teams, each 
module small enough to be fully comprehend by a single individual (Blaauw and 
Brooks). The working of modularity is plainly visible when it comes to the widely dif-
ferent hardware components that can connected to computer systems through a single 
peripheral interface specification—e.g., USB or SCSI. Such an interface specifies both the 
services which the particular device must provide (e.g., storage and retrieval of bits, 
status information, etc.) and the software and hardware language necessary to interact 
with the module (e.g., connector pins assignment, with corresponding control signals).  

Layering is a specific flavor of modularity where modules are organized in a series of 
client-server relationships: each layer is a server to the layer above, and a client to the 
layer below. While the best- known example of layering in software infrastructure is the 
famous 7-layers deep “network stack” defined by the ISO OSI Model (Zimmermann, 
1980), each computing resource (i.e., network, storage, and processing) is accessed 
through a similar stack of layers. In each case, bits move up from their grounding as 
signals in some physical media (fiber optic, magnetic drive, electrical wires) to binary 
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information organized according to units defined by each layer (file, datagram, etc.) 
Applications access the stacks through “application programming interfaces” (APIs) to 
the various modules of the operating system. 

Trade-offs 

The plug-and-play possibilities that modularity bring to systems design are often re-
marked on—it is for example one of five essential principles of new media identified by 
Manovitch (2007), and it is at the core of Zittrain’s (2009) analysis of the “generative ar-
chitecture” of the (early) Internet. That these possibilities must be understood together 
with the particular constraints modular designs bring to the table is however rarely re-
marked on. As McGee remarked, the most efficient programs are hand-tailored, provid-
ing no generalization whatsoever; conversely, highly general abstractions will result in 
significant loss in efficiency. This is because the specification of an abstraction (the inter-
face) general enough to accommodate a wide range of implementations necessarily in-
volves trade-offs, “between the freedom that the abstraction provides and the efficiency 
of possible implementation.” (Agre, 1997)  

A simple example can help illustrate this concept. Consider the problem of organizing a 
closet full of disparate objects — e.g., sporting equipment, children toys, craft supplies, 
clothing. If the primary goal is to pack as many objects in the closet as possible, the best 
approach is to pack based solely on objects’ size and shape, using the closet itself as a 
box. A much more practical solution however will use a widely available modular 
structure, storage bins, and group objects by categories, filling and stacking as many 
bins as will fit. In contrast with the first solution, packing, locating and retrieving ob-
jects is greatly simplified, but this convenience comes at the expense of overall density: 
bins will be more or less full, and they will fit more or less snuggly in the closet itself. 
Different bin sizes, as well as different types of objects, will result in different space in-
efficiencies (2). 

This is the classical dilemma of high-level programming languages: the more a lan-
guage’s constructs abstract away from the underlying physical machine, the less effi-
cient the resulting code tends to be. For example, functional languages (e.g., Lisp) re-
lieve programmers from the burden of requesting and releasing memory locations for 
variables, allowing them to proceed as if memory was an inexhaustible resource. But 
memory is in fact, always a finite resource, and instead of manual management by us-
ers, “garbage collection” routines must reclaim obsolete memory locations, a process 
that itself consumes processing power, as it seeks to reconstruct after-the-fact the mem-
ory space allocated and de-allocated by the programmer. The programming conven-
ience of a boundless memory is thus incurred at the cost of processing resources. This 
makes garbage collection particularly inappropriate for real-time applications (e.g., 
software that implements anti-lock brakes), given the routine may request processing 
power at a crucial moment (3). The point here is that the trade-offs implied by modular-
ity will not affect all applications equally, or even the same application under all cir-
cumstances. Yet, the design trade-offs inherent in abstracting from physical resources 
are rarely acknowledged in the computing literature. 
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The digital abstraction 

These trade-offs manifest themselves all the way down to the lowest level of the stacks, 
the physical layer. Agre (1997) notes the most fundamental abstraction computers rely 
on is the “digital abstraction,” the transformation of physical signals into discrete binary 
quantities. From Tinker Toys to hydraulic valves, as long as a material can support the 
basic operations of the digital abstraction, it can be used as the basis for a computing 
system (Hillis, 1999). However, each of these materials brings its own characteristics to 
the performance of these operations, including susceptibility to interference, frequency 
of mechanical failure, relative lack of speed, resistance and attenuation, and of course, 
cost.  

The digital abstraction can be maintained in spite of this “noise” because, as Kirschen-
baum notes, through error-correction codes, buffering, and other techniques, computers 
can self-efface the static—scratches on a record, smudges on paper—that typically sig-
nals the materiality of media:  

“All forms of modern digital technology incorporate hyper-redundant error-checking 
routines that serve to sustain an illusion of immateriality by detecting error and correct-
ing it, reviving the quality of the signal, like old-fashioned telegraph relays, such that any 
degradation suffered during a subsequent interval of transmission will not fall beyond 
whatever tolerances of symbolic integrity exist past which the original value of the signal 
(or identity of the symbol) cannot be reconstituted.” (p. 12)  

These mechanisms, formally described in information theory, are used throughout net-
worked computing systems: the impact of media irregularities on hard drive platters 
can be mitigated through the use of error-correction codes; the unpredictability of net-
work bandwidth can be mitigated through the use of buffering, ensuring smooth deliv-
ery of latency-sensitive content—Hillis (1999) calls this “the essence of digital technol-
ogy, which restores signal to near perfection at every stage.” It is this ability to ceasessly 
cleanup after its own noise that so powerfully enables computers to seemingly sever 
their dependency on physical processes that underlie processing, storage, and connec-
tivity. 

Yet, the physical characteristics of a resource (be it computation, storage or networking) 
cannot simply be transcended, and noise can only be conquered at the expense of other 
resources. For example, manufacturers must design electronic circuits using a voltage 
differential between 0 and 1 broad enough to fight off interference by galactic cosmic 
rays (“single event effects”), at the cost of increased power consumption (May & 
Woods, 1979); error-correcting codes, widely used to protect against transmission inter-
ference, result in both data expansion (and thus, reduced capacity) and increased proc-
essing load. In the later case, designers will choose among different codes according to 
both the expected profile of the noise (frequency, intensity), and the resource trade-offs. 
Once again then, independence from the material can only be obtained at the costs of 
certain trade-offs.  
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Sharing 

Computing resources (processor, storage, network) are not only finite, but to maximize 
their efficiency and return on investment, must be shared among multiple applications 
and users. Thus, abstractions not only relieve programmers from the need to manage 
the finiteness of resources, but also from the need to manage how they are shared with 
other applications, competing for their share of limited processing power, memory, 
bandwidth, storage. This is not only for the purpose of programming convenience, but 
because policies for sharing must implemented at the system (rather than application or 
user) level. Once more, this will inevitably involve various trade-offs, favoring some 
types of applications over others. For examples, packet switching protocols maximize 
the utilization and sharing of finite communication links by breaking down users’ mes-
sages in small packets, and routing them to their destination using a ‘best-effort’ policy 
that impacts unevenly latency-sensitive (voice, streaming video) and latency-insensitive 
(browsing, email) applications.  

Stack equilibrium 

Two opposing forces are thus at play with respect to the make-up of the stack that ob-
tain at any particular moment of transition in technical history: one the one hand, the 
freedom provided by modular design and the resulting efficiency trade-offs; on the 
other hand, the primary drive of computing systems design, greater efficiency, as 
measured by “the amount of useful computational work that gets done in the service of 
specified goals by a given amount of machinery in a given period of time.” (Agre, 1997) 
It is the conflicting pressures of these two forces that determine the evolution of the lay-
ered abstractions that link digital information to its material basis.  

In the next three sections, I illustrate the operation of these forces by tracing the histori-
cal definition of major abstractions within the processing, storage, and networking 
stacks, and their evolution as they respond to changes in the material basis of comput-
ing resources. In particular, I will highlight how the drive to efficiency manifests itself 
as the pressure to co-design layers, thus violating the fundamental principle of modular 
independence itself. 

5. The processing stack 

A processor, or central processing unit (CPU), contains circuit logic designed to execute 
programs, i.e., sequences of instructions. These instructions enable a programmer to 
access three basic set of resources: (a) numerical routines, typically provided by the 
arithmetic-logic unit (ALU); (b) memory management services, i.e., reserving, storing 
to, and reading from memory locations; and (c) flow control, i.e., selecting the next in-
struction to be executed, based on conditional branching, jumps, etc.  

Each processor (or processor family) provides its own set of instructions, each directly 
operating on the processor’s hardware by performing the necessary sequences of logical 
operations (opening and closing gates, moving data to and from memory, etc.) to pro-
duce the appropriate result. The set of instructions of a processor is its machine language, 
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and provides the interface to the processor conceived as a module. The computational 
model expressed by an instruction set is referred to as its “instruction set architecture” 
(ISA).  

The designers of a processor and its accompanying machine language must contend 
with the fundamental trade-offs between convenience of instructions to programmers 
and efficiency of implementation. That is, in machine language, “the expressions are 
costly, … each operator and variable in the vocabulary must be implemented and real-
ized by the interpreting mechanisms. Each bit in a machine-language program occupies 
a costly memory cell and must be obtained from that cell at the expense of costly time.” 
(Blaauw & Brooks, 1997, p. 17) The computer architect thus evaluates each expression of 
the machine language against her “bit budget”, the amount of memory locations she 
has to work with, as well as the “bit traffic” each expression will generate. 

While early computers were always programmed directly in machine language, the dif-
ficulty of writing and debugging machine-level code of increasing difficulty generated 
interest in the development of “high-level” programming languages that would pro-
vide more readable notations for specifying instructions, leading to greater efficiencies 
in program development and tuning. Before they can be executed by a processor, pro-
grams written using high-level programming languages must first be processed by a 
compiler, a program which takes a program in a source language and translates it into an 
equivalent program in the machine language of a given processor. A program in ma-
chine language is “that representation of programs that resides in memory and is inter-
preted (executed) directly by the hardware.” (Blaauw & Brooks, 1997, p. 16) 

High-level programming languages provide several services for programmers that 
simplify access to and use of the basic resources of the processor, such as automatic 
memory management, data type checking and enforcement. They also extend the un-
derlying computational model of the machine, by providing for the creation of new 
data types and operators, broader ranges of control (e.g., recursion), and the ability for 
programmers to create their own abstractions (functions, objects). In other words, “a 
language rebuilds the machine to provide more convenient facilities, and a program 
further rebuilds the language to provide facilities closer to the problem to be solved.” 
(Sethi, 1996, p. 11) The computational model implemented by programming language 
thus defines “virtual machines” that run on the basic physical hardware implemented 
by the processor. The basic trade-off for this convenience is one of efficiency, that is, the 
code generated automatically by a compiler typically takes longer to run and occupies 
more space than hand-crafted machine language code. Despite this, most programmers 
today resort to high-level languages, and compilers designers are tasked with reconcil-
ing the abstractions offered by a language’s computational model, and its implementa-
tion in the machine language of the underlying machine. However, the independence of 
these two layers of abstraction—machine vs. programming language—is under con-
stant pressure. 

 



 14 

Co-evolution of layers 

In certain cases, the abstractions defined by high-level languages may lead to design 
decisions at the level of implementation, in top-down fashion. In the 1980s, the RISC 
chip design revolution proceeded in part from the observation that the convenience of 
the abstractions provided by high-level languages had become expected by program-
mers:  

“instruction sets for conventional CPUs have been defined with an implicit assumption 
that many programmers will use assembly language. … But, increasingly, programmers 
do not use assembly language, except where optimal performance is essential or machine 
functions are required that are not reflected in the source language. “ (Radin, 1983, p. 40)  

Given this, it made sense to design chips that directly implemented high-level abstrac-
tions with improved efficiency (4). In 1980, IBM experimented with the design of a 
minicomputer whose machine language was co-designed with an optimizing compiler 
for the PL.8 language (a subset of PL/1). In similar fashion, from the 70s through the 
90s, several generations of machines providing hardware support to run Lisp programs 
more efficiently were developed for the AI community by both startups and established 
computer manufacturers, including Symbolics, Xerox, and a Texas Instruments/Apple 
partnership (Pleszkun & Thazhuthaveetil, 1987). Other machines were developed to 
support the object-oriented strategies of Smalltalk (e.g. Ungar, Blau, Foley, Samples & 
Patterson, 1984). As viable commercial products, all succumbed to the rise of commod-
ity personal computers, whose cost/performance ratio negated much of the commercial 
rationale of these efforts. 

Another type of specialized processor design, parallel architectures, has also suffered a 
long history of commercial failures, despite the dazzling promise of increasing process-
ing power by several orders of magnitude. Parallel architectures altogether eschew the 
von Neumann model of serial computation (first proposed in 1945 in the context of the 
EDVAC), which forces algorithmic design through the very narrow funnel of sequential 
programming. Reducing all problems to sequences of atomic instructions has proved 
enormously convenient for programmers, but has resulted in serious design constraints: 
because of this “von Neumann bottleneck,” much of a conventional processor’s cir-
cuitry remains inactive at any one moment, often waiting on the much slower memory 
subsystem. Thus, speed increases over the last 40 years have been predicated on a strat-
egy of increasing clocking (the speed at which instructions are processed) and transistor 
density: 

“the implicit hardware/software contract was that increased transistor count and power 
dissipation were OK, as long as architects maintained the existing sequential program-
ming model. This contract led to innovations that were inefficient in terms of transistors 
and power […] but that increased performance while preserving the sequential pro-
gramming model.” (Asanovic et al., 2009) 

This contract has become unsustainable, as chip designers have now reached the 
“power wall,” i.e., physical limitations on the ability of transistors to dissipate heat effi-
ciently (resulting in burning hot laptops!). In 2004, Intel announced all future product 
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designs would be based on multicore architectures, the packing of multiple processors 
on a single chip assembly. The decision signaled a turning point in the evolution of 
computing: “the La-Z Boy era of program performance is officially over, and program-
mers who care about performance must get up off their recliners and start making their 
programs parallel.” (Patterson, 2010) 

This will require more than a simple motivational exercise: by all accounts, breaking the 
dominance of the Von Neuman model is as formidable a challenge as the computing 
professions have ever faced, a profound break with existing programming practice. It 
will require a greater commitment to parallel methods in the computer science curricu-
lum, but just as importantly, it will require the development of new abstractions that 
will shield programmers from the inherent complexity of parallel programming. Fur-
thermore, this new stack of abstractions will face the difficult task of simultaneously 
supporting applications that leverage the power of multicore architectures, while still 
ensuring that “legacy code still works with acceptable performance.” (Asanovic et al., 
2009) 

These pressures on the evolution of the processing stack illustrate the tension between 
the freedom afforded by modularity, and the inefficiencies that it necessarily brings into 
play: in this case, a single modular design, the von Neumann model, ruled the stack for 
over 60 years. This dominance resulted in economies of scale that defeated repeated 
attempts at creating a viable market for alternative, parallel architectures, despite their 
promise for increased processing power. The persistence of the model was further en-
abled by a computer science curriculum committed to the convenience afforded by se-
quential programming. Yet, changes in the material basis of computing resource neces-
sarily ripple up the stack, as exemplified by efforts to design new programming abstrac-
tions for parallel architectures.  

6. The Storage Stack 

In contrast to the electronic components that make up the processor, the media lever-
aged over the years to store and access data—punch cards, magnetic tapes, hard drives, 
flash memory—profusely signify their materiality, through mechanical noise, slow 
speed, poor reliability, and sensitivity to wear. The abstractions that make up the stor-
age stack must thus provide consistent services to applications in the context of wide 
discrepancies in the performance characteristics of storage technologies. The defining 
characteristic of these devices is their reliance on mechanical motion. From punched card 
to magnetic tape to disk drives, large-scale external storage has been realized by the 
physical movement of data, spread over one-dimensional (tape), two-dimensional (flop-
pies), or three-dimensional surfaces (hard drives).  

Overall, the use of mechanical motion, however finely controlled, does not sit comforta-
bly with the world of solid-state electronics. The most important friction is the huge dif-
ferential in access time between internal and external memory. In contrast to the 
movement of bits in strictly electronic hardware, the reading and writing of bits on ex-
ternal media is extraordinarily slow, from four to six orders of magnitude slower! Thus, 
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in applications that process large amounts of data, fetching and writing data to and 
from external memory is often the main performance bottleneck in computation. As 
Blaauw and Brooks (1997) note,  

“Four orders of magnitude is an immense ratio. Imagine a CPU doing an operation each 
second; a disk half-rotation 104 slower takes three hours! … While a disk turns half 
around or a tape accelerates to reading speed, a workstation CPU can execute perhaps 
100,000 instructions.” (p. 453) 

This differential has been an important constraint from the very first days of digital 
computer design. In the 50s, experimented with a wide range of media and technologies 
as potential candidates for both internal and external storage: in the first case, these in-
cluded Williams tubes, mercury delay lines, and magnetic drums, etc. (Eckert, 1953); in 
the second case, magnetic tape, photographic film, paper tape, magnetic wire and mag-
netic drums (Snyder, 1952). While speed was a primary consideration, design choices 
were, as Eckert pointed out, “strongly influenced by the cost of achieving that speed, 
and by the requirements of the other circuits.” (p. 1393)  

Blocks are one structure that aims to reduce the impact of the speed differential. The 
block size of a device is typically the amount of data transferred to/from the device in a 
single operation: 

“Access varies greatly because of medium motion. Finding an arbitrary bit may take quite 
a long while. Finding the next bit on the track is very quick—a fraction of a microsecond. 
Therefore, if there is the slightest chance … of needing the next datum after finding the 
one sought, one is well-advised to read it also into memory. This logic leads inescapably 
to the reading and writing of data in blocks whose size is limited chiefly by the cost and 
availability of memory space. If it takes a long time to go to the well, one should bring 
back as much water as the bucket will hold.” (Blaauw & Brooks, 1997, pp. 453-454) 

The trade-off here is that because the block, rather than the bit, becomes the fundamen-
tal unit for reading and writing to storage, results in significant amounts of wasted 
space for applications that generate large quantities of small files.  

Furthermore, storage devices strive to efficiently provide two fundamental and some-
what contradictory objectives: providing the highest throughput possible in reading 
and writing sequential streams of bits, and minimizing the time it takes to locate a par-
ticular datum on the media—so-called “random access.” (Buchholz, 1963, p. 91) To op-
timize for both of these features requires to carefully balance the structures that govern 
the placement of the data over the media (e.g., tracks, cylinders) with the mechanisms 
that govern the motion of data.  

The file system interface 

The primary abstraction that governs the relationship between applications and storage 
device is the file. The story of this abstraction must begin with the prominent role 
played by punched-card equipment in data processing until the late 1950s, a role now 
recognized in several studies (e.g., Campbell-Kelly, 1990; Yates, 2005). Punch cards 
served as input and output media, as well as long-term storage to the tabulating system. 
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One punch card and its various data “fields” constituted a “record,” while a collection 
of cards constituted a “file” (Haigh, 2009).  

The development of the electronic computers that would eventually replace tabulators 
was a gradual process, in which the issue of storage media played a defining role. Not 
only did the efficiency and cost of computers depend to a great extent on suitable tech-
niques for fast internal direct access memories, but their ability to integrate with exist-
ing input, output, and storage technologies (i.e., punched cards) was a crucial factor in 
ensuring their adoption. A computer such as the IBM 650, the world’s first mass pro-
duced computer, remaining in production from 1953 to 1969, encompassed the full 
range of memory devices and input-output technologies available, including a disk 
drive, a magnetic tape drive, units for reading and punching cards, as well as tape-to-
card and card-to-tape conversion units. Because of this extensive variety of storage de-
vices, by 1957, IBM designers “were already distinguishing between logical and physi-
cal aspects of data storage in tape files, a key concept for the decoupling of application 
programs from specific hardware configuration and file formats” (Haigh, 2009, p. 10).  

The designers of the UNIVAC, one of the 650’s main competitors at the time, chose to 
make reliance on magnetic tape a distinguishing feature of their system. Indeed, “for 
most customers, what was revolutionary about the UNIVAC was not so much its 
stored-program design or even its electronic processor, it was the use of tape instead of 
punched cards” (Ceruzzi, 2003, p. 30). Yet, the logical organization of the information 
was directly copied from that used in tabulating systems: 

“The concepts of records, files, fields, special codes to mark the beginning and end of 
files, and the merging information from one file to another (all ubiquitous in computer 
systems today) have their origins in electromechanical punched card machine methods 
dating back to the 1930s. Records using the same basic format were laid out sequentially 
along the strip of magnetic tape. Additional codes were introduced to provide checks 
against corrupted data.” (Haigh, 2009, p. 7) 

The influential time MULTICS operating system that emerged in the early ‘60s to provide 
time-sharing for mainframes included a “general-purpose” file system for external stor-
age. Its design included features still widespread today, including hierarchical directo-
ries, symbolic links (i.e., aliases), and access control. MULTICS’ designers clearly saw 
the role of the file system as insulating users (i.e., programs) from the complexity of 
storage:  

“In most cases a user does not need to know how or where a file is stored by the file sys-
tem. A user’s primary concern is that the file be readily available to him when he needs it. 
In general, only the file system knows on which device a file resides. The file system is 
designed to accommodate any configuration of secondary storage devices. These devices 
may cover a wide range of speeds and capacities. All considerations of speed and effi-
ciency of storage devices are left to the file system. Thus all user programs and all other 
systems programs are independent of the particular configuration of secondary storage.” 
(Daley & Neumann, 1965) 
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Ritchie and Thomson’s design for UNIX envisioned an even more prominent role for 
files, stating, “the most important job of UNIX is to provide a file system.” (Ritchie & 
Thompson, 1974) In fact, the file is the dominant abstraction UNIX provides to pro-
grammers for any input-output device, from paper tape to hard drives. Ritchie and 
Thompson proposed a new data structure, the “inode,” that would release the file sys-
tem from the need to determine in advance how large a disk file might eventually grow 
and improve the dynamic sharing of storage space among users. An inode is an exten-
sible tree structure that provides an index to the disk location of the blocks containing 
the file data. As the file grows, such “direct blocks” are replaced by “indirect blocks” 
that, instead of data, contain the disk location of the direct blocks.  

Such a dynamic data structure provides enormous flexibility to the file system —it may, 
for example, grow the file as large as needed, and rapidly reclaim disk space for other 
users as the file shrinks. The (significant) downside is that as different users and appli-
cations create, expand, shrink, and delete files on shared storage, the contents of a file 
become randomly distributed over the storage device, with consequential negative im-
pact over sequential access. Subsequent implementations of the original system have 
corrected for this problem by increasing the block size (at the cost of increased wasted 
space) and optimizing the sequential placement of blocks, by trying “to allocate new 
blocks on the same cylinder as the previous block in the same file.” (McKusick, Joy, Lef-
fler & Fabry, 1984) There is thus content tension between the freedom provided by a 
system abstraction (grow the file as needed), and the inefficiencies it introduces with 
respect to the spatial placement of data.  

The syntax and behavior of the UNIX file system has been standardized as part of the 
IEEE POSIX process, providing a uniform interface to the various services its pro-
vides—file creation, deletion, reading, writing, seeking, etc. It is this standard interface 
that provides the glue for the design of the Google File System (GFS) suitable for the 
processing needs of its software engineers (i.e., working with files typically in the multi-
GB range) and for a computing environment consisting of “hundreds or even thou-
sands of storage machines built from inexpensive commodity parts.” (Ghemawat, Go-
bioff & Leung, 2003, p. 29). The main data structure of the GFS is a “super inode” that 
sits above the UNIX file system. Like a regular inode, it contains pointers to either direct 
or indirect blocks, with the distinction that these blocks are ordinary UNIX files, which 
may be located on any number of drives. The UNIX file system abstraction is thus “en-
capsulated” by the larger abstraction defined by the GFS, with quite different parame-
ters of course — the block size is a whopping 64 MB, over the 8K common in UNIX im-
plementations. In designing the GFS, Google engineers enjoyed a considerable advan-
tage: the freedom to breach the independence of the application and file system layers, a 
freedom that otherwise rarely obtains in software infrastructure design: 

“One thing that helped tremendously was that Google built not only the file system but 
also all of the applications running on top of it. While adjustments were continually made 
in GFS to make it more accommodating to all the new use cases, the applications them-
selves were also developed with the various strengths and weaknesses of GFS in mind. 
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[…] We could push problems back and forth between the application space and the file-
system space, and then work out accommodations between the two.“ (McKusick & Quin-
lan, 2009, p. 45) 

Such accommodations are detailed in a discussion of MapReduce, Google’s in-house 
parallel programming environment: “We conserve network bandwidth by taking ad-
vantage of the fact that the input data (managed by GFS) is stored on the local disks of 
the machines that make up our cluster. […] When running large MapReduce operations 
on a significant fraction of the workers in a cluster, most input data is read locally and 
consumes no network bandwidth.” (Dean & Ghemawat, 2008) That is, by breaching the 
independence of the GFS layer, MapReduce can thwart the potentially massive ineffi-
ciencies of a highly parallel environment. Thus, even in the context of Google’s mas-
sively distributed data processing centers, the issues remain the same: how to reconcile 
a powerful abstraction that provides considerable convenience to programmers with 
the need to optimize the spatial organization of the data for particular types of process-
ing. 

7. The Network Stack 

The network stack provides applications with services ensuring the error-free transmis-
sion of structured bits from one computer to another with the highest throughput (ca-
pacity) and lowest latency (time in system) possible. This must be accomplished in the 
context of significant material constraints: (a) signals must travel over physical media—
whether air, copper wire or fiber optic—each bringing different characteristics to the 
job, with regard to susceptibility to interference, dissipation, capacity, and cost; (b) the 
physical infrastructure necessary to provide point-to-point communication is enor-
mously costly, and consequently driven by particular economic dynamics, including 
network effects, and economies of scale and density; (c) these costs require that com-
munication links to be shared among multiple users, with the corresponding need for 
fair policies to manage traffic and its attendant inefficiencies. 

Materials 
Common media for digital communication include twisted-pair (telephone wire), coax-
ial cable (cable television), fiber optic, and radio waves. Like storage, a chief characteris-
tic of communication media is its unreliability, including attenuation, the gradual 
weakening of the signal due to the physical resistance of the media to electrical current; 
and noise, the gradual distortion of the signal by a wide variety of sources, including 
interference from other wires, radio signals, the physical environment, etc. Because at-
tenuation and noise determine the capacity of the media (Czajkowski, 1999), extensive 
measures must be deployed to counter their effects, including signal amplifiers and ca-
ble shielding.  

Additionally, signal processing techniques help ensure the correct transmission of data 
over an unreliable channel: modulation translates digital data into a form suitable for 
transmission for a given physical medium, while error-correcting codes use redundancy 
to protect sequences of bits against noise. Different coding and modulation techniques 
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are appropriate given the specific noise characteristics of the transmission channel and 
the amount of processing they require. In both cases, the fundamental trade-off is accu-
racy vs. capacity, that is, the more protection against noise, the less data the channel can 
carry, a trade-off first articulated by Shannon (1949).  

Physical infrastructure 
Worldwide, the “twisted pair” copper wires deployed for the provision of telephony 
represents the most important infrastructural investment for telecommunications pro-
viders, millions of wires that connect individual dwellings to the network, built over the 
course of the last century. A defining engineering project of the early 21st century is the 
conversion of this “voiceband” infrastructure, limited to the transmission of analog 
voice, to a “broadband” infrastructure, i.e., one capable of carrying significant amounts 
of digital information. While the physical properties of optical fiber have made it the 
preferred material for wireline broadband, the enormous costs of infrastructural de-
ployment to the level of the “last mile” insure that the Internet will continue to operate 
over a mixture of physical materials: 

“Although many broadband architectures require optical fiber to be brought at least some 
of the way towards the home from the exchange, bringing the fiber increasingly closer to 
the home become prohibitively expensive. The cost of fiber deployment is dominated not 
by the material costs but by the cost of civil works (i.e., the digging of the road/pavement 
and the laying of the fiber)—a costs which can range between £25 and in excess of £75 per 
metre, depending on the circumstances.” (Czajkowski, 1999, p. 127) 

These costs have significant consequences: firstly, like capacity on highways, the re-
source is largely inelastic. Unlike processing power or storage, service providers cannot 
lay additional cables on demand, and thus, must meet future demand through over-
provisioning. The widespread adoption of this strategy by telcos at the height of the 
dot-com era resulted in vast amounts of “dark fiber,” i.e., unused capacity; secondly, 
the economies of scale and density that characterize such network infrastructures will 
continue to offer low incentives for telecommunication providers to update their infra-
structure in rural areas; thirdly, telcos have been highly motivated to fund research for 
the development of encoding and multiplexing schemes that maximizes the amount of 
bits that could be transmitted over the existing infrastructure (e.g., DSL over twisted 
pairs). These issues are not limited to wireline communication: much of the wireless 
(cellular) infrastructure was similarly developed for voice traffic and thus required ex-
tensive investments from telcos to handle broadband.  

Sharing 
As with other point-to-point networks (e.g., telephone, mail, or road system), it is not 
feasible or cost-effective to establish direct links between every computing device. In-
stead, multilevel hierarchies of communication links are used, whereby individual links 
connect to hubs (switchboards, mail sorting centers, highway interchanges, airports), 
themselves connected to each other through shared, high-capacity links. A central de-
sign imperative of network stack is thus the efficient use of shared and scarce commu-
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nication links, given various characteristics of traffic: peak/off-peak demand, data vs. 
voice, quality of service requirements, shape, etc.  

A defining characteristic of the Internet is its reliance on packet switching to maximize 
limited network resources: first, in the context of computer-generated “bursty traf-
fic,”exhibiting substantial variations in intensity, breaking down communications in 
small packets helps evenly spread usage of a communication link among multiple users 
competing for the resource; secondly, depending on network topology, packet switch-
ing can help alleviate congestion by moving traffic towards less congested links; finally, 
the network can adapt in real-time to significant changes in topology. Yet, as imple-
mented in the TCP/IP protocols, packet switching entails significant drawbacks: no 
minimum latency may be guaranteed, a significant issue for applications such as 
streaming media or telephony.  

Cross-layer design 

The network stack differs significantly from the processor and storage stack, insofar as 
it is the only case involving the a-priori definition of the modular decomposition of the 
stack and its imposition through standardization (Abbate, 2000; Zimmermann, 1980). 
For our purposes, the main elements are as follow: in the 1970s, with several experi-
ments under way (including Arpanet), the merging of computing and telecommunica-
tions was already on the horizon. In 1978, ISO proposed an overall layering framework 
for networking technologies, that is a certain modular decomposition of the network 
stack. The OSI (for Open Systems Interconnection) model specified how a set of net-
working protocols should fit together to form a complete system, in effect, a meta-
standard that incorporated other standards, and specified their interaction. The model 
listed seven layers to manage the movement of bits from physical media to applications 
and back: physical, link, network, transport, session, presentation, application. Each 
layer would provide for different types of services (e.g., network provides routing, 
transport provides reliable delivery), and for each layer, multiple standards could be 
specified.  

The mixed successes of OSI and of its top-down design through large standardization 
bodies have often been contrasted with the nimble political structures that characterize 
Internet governance (Russell, 2006). Yet, as Dave Clark, former chair of the Internet Ar-
chitecture Board, explains, the benefits of modularity themselves remain unquestioned:  

 “All good computer scientists worship the god of modularity, since modularity brings 
many benefits, including the all-powerful benefit of not having to understand all parts of 
a problem at the same time in order to solve it. … The field of network protocols is per-
haps unique in that the ‘proper’ modularity has been handed down to us in the form of 
an international standard: the seven-layer reference model of network protocols from the 
ISO.” (Clark, 1996)  

However, this ‘proper’ modularity is currently under stress, as it must adapt to the 
emergence of a new material basis for networking, that of wireless communication. 
Along with the dazzling possibilities of mobile computing comes significant engineer-
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ing challenges: a much larger range of channel conditions, new source of interference, 
and devices that move more or less randomly through the network infrastructure. And 
just like the case for wireline communications, the infrastructure for wireless communi-
cations must be updated to account for the changing nature of the data it carries—from 
analog voice to digital data. The wireless infrastructure must account for the wide range 
of applications pushing and pulling the data through the radio spectrum, all with dif-
ferent Quality of Service (QoS) needs, that is, with different degree of sensitivity to la-
tency: “Emerging networks must support various and changing traffic types with their 
associated Quality-of-Service requirements as well as networks that may have changing 
topologies. The problem of various traffic types is typified in newly defined 3G net-
works. These networks must support multimedia traffic with manifold delay, error-rate, 
and bandwidth needs.” (Rappaport, Annamalai, Buehrer & Tranter, 2002, p. 158) Yet 
another emerging wireless infrastructure, that of sensor networks, must compose with 
the very low power consumption requirements of minuscule wireless devices.  

Thus, the very different nature of the physical layer, along with the very different needs 
which wireless media must satisfy, have led to persistent calls for what amounts to the 
ultimate taboo in network architecture, breaching the independence of the OSI layers 
through “cross-layer design”: 

“In order to meet the challenges of ubiquitous wireless access, network functions (.e., the 
various OSI layers) must be considered together when designing the network. QoS re-
quirements that can and will vary according to application will force the network layer to 
account for the physical-layer design when optimizing network throughput. Further, dif-
ferent applications are better served by different optimizations. This leads to a design 
methodology that blurs the lines between layers and attempts to optimize across layer 
functionality.” (Rappaport et al., 2002, p. 159) 

Unsurprisingly, from the onset, proposals for cross-layer design have raised no small 
amount of controversy. The first issue is, quite simply, that modularity has proven such 
an successful design strategy in computing precisely because it circumscribes the range 
of interactions between modules (layers). Cross-layer optimization is not different to 
using “goto” statements, as Kawadia & Kumar (2005) argue, “Does one then get un-
structured spaghetti-like code that is hard to maintain?” The wonderful benefits of 
breaking down complex systems into smaller, more manageable, parts are no longer 
available:  

“Once the layering is broken, the luxury of designing a protocol in isolation is lost, and 
the effect of any single design choice on the whole system needs to be considered. … 
Compounding this is the fact that some interactions are not easily foreseen. Cross-layer 
design can thus potentially work at cross-purposes; the ‘law of unintended consequences’ 
can take over if one is not careful, and a negative effect on system performance is possi-
ble.” (Kawadia & Kumar, 2005, pp. 3-4)  

This is not simply a hypothetical situation: Kawadia and Kumar are able to exhibit sev-
eral examples where proposed cross-layer designs of the MAC and physical layer 
would result in undesirable interactions with the network layer, resulting in net per-
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formance losses under certain conditions. Furthermore, the argument that cross-layer 
design will improve performance thus very much depends on what dimension of per-
formance is emphasized. As they underline, this is always the fundamental trade-off of 
modular design:  

“On the other hand, taking an architectural shortcut can often lead to a performance gain. 
Thus, there is always a fundamental tension between performance and architecture, an 
temptation to violate the architecture. However, architecture can and should be regarded 
as performance optimization, although over a longer time horizon. An architecture that 
allows massive proliferation can lead to very low per-unit cost for a given performance. 
More properly, therefore, the tension can be ascribed to realizing short-term vs. longer-
term gain. In the particular case of wireless networks, which may be on the cusp of mas-
sive proliferation, our contention is that the longer-term view of architecture is para-
mount.” (Kawadia & Kumar, 2005, p. 4) 

That is, layering enables stable forms of market segmentation (and the resulting econo-
mies of scale) to take hold, and thus, the “very low per-unit cost” that has been a major 
element of the success of the telecommunication industry. Thus, while the rationale for 
cross-layer design is understandable given the new material basis of wireless communi-
cations, it is a recipe for economic (and political) instability, at a particularly sensitive 
time: “it well behooves us to adopt a cautionary approach to cross-layer design at a 
critical time in the history of wireless networks when they may well be on the cusp of 
massive proliferation that is the objective of us all.” (Kawadia & Kumar, 2005, p. 11)  

8. Discussion 

The preceding historical analysis of the evolution of the three resource stacks demon-
strates that the materiality of digital information can be understood as the composition 
of two different sets of constraints: those due to the physical characteristics of the lim-
ited resources of computation; and those due to the adoption of modularity as a means 
of mediating between these resources and the applications that manipulate this infor-
mation. At their most fundamental, each of these resources deals with bits as physical 
quantities, whether magnetic polarities, electric voltages, or radio waves. These physical 
quantities are first abstracted as bits, and circulated up and down the resource stacks, 
the layered chains of modules that obtain between applications and resources.  

The magic of modularity, its ability to decouple functional specification from imple-
mentation, provides enormous freedom and flexibility to the management, coordina-
tion, and evolution of complex technical systems. It provides programmers with stable 
interfaces to system resources in the face of continuously evolving hardware. However, 
in abstracting from the noise that different materials bring to the digital abstraction, 
from specific implementations of physical resources, from their distribution in space, 
and from their sharing among multiple users, such decoupling necessarily involve effi-
ciency trade-offs. 

These trade-offs must be continuously negotiated with respect to the fundamental drive 
of systems design, maximizing the use of systems resources in service of greater effi-
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ciency. In particular, this drive continuously works to undermine the freedom afforded 
by modular decomposition, for example, through attempts at co-design of independent 
layers. Furthermore, changes to the material resources of computing (e.g., wireline to 
wireless) necessarily ripple through the layers of the stacks, requiring renegotiation of 
previously established trade-offs, either through the market or the standardization 
process (5). The computing infrastructure thus evolves through the conflicting pres-
sures of forces that encourage a certain kind of persistence, and those that make possible 
certain kinds of moves. 

Persistence 

Several characteristics of modularity act as conservative forces against evolving mate-
rial basis of computing. The chief force is inherent to modular decomposition: while it 
provides for flexible decoupling of abstractions from implementations, the modular de-
composition itself is extremely rigid, since any change involves redefining the relationship 
of a minimum of two layers. Parkas (1984) foresaw as much, when he suggested that 
“only very unlikely changes should require changes in the interfaces of widely used 
modules.”  

Furthermore, particular modular decompositions become embodied in the hardware, 
software, and institutional infrastructure (e.g., standards, technical training) of comput-
ing. Such materialization of particular abstractions provides the long-term stability nec-
essary for economies of scale to take hold. It is such economic advantages that have en-
abled von Neumann machines to provide the best processing power/cost ratio for the 
last 60 years—the closest we have to eternity in the world of computing. Emergent 
forms of materiality threaten existing architectures with economic instability, as 
stakeholders seek adjustments to the stack to improve its efficiency in favorable ways 
(e.g., cross-layer design). At the same time, the high costs of infrastructural investments 
ensure that computing resources are repurposed rather than merely replaced. The re-
source stacks must thus compose with different types of materials (parallel and non 
parallel architectures, twisted pair and fiber, local and remote storage) with resulting 
trade-offs and inefficiencies. Thus, the solutions developed in a particular moment of 
technical history tend to persist and accrete. 

Thus, in contrast to the perception of computing as moving at a furious pace of techni-
cal evolution, its infrastructure evolves very slowly. Because of the need to maintain 
backward compatibility, the incorporation of major changes in the material basis of 
computing — e.g. multi-core processing, cloud-based, and wireless computing — pro-
ceeds conservatively through mutation and hybridization, rather than outright break 
with the past. For example, rather than reinvent the abstractions that govern processing 
to take advantage of the new possibilities offered by server farms, Amazon’s EC2 cloud 
service reproduces virtual von Neumann architectures, so that consumers can run exist-
ing applications and commercial software 

Moves 

In spite of these conservative forces, the resource stacks are in a constant state of (more 
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or less pronounced) flux. The fundamental pressure for change is exerted by the drive 
for greater efficiency. While we are familiar with efficiency as achieved by material sci-
ence (greater storage density, greater communication speed, greater clocking speed), 
less familiar are the kind of moves within the stack that also result in efficiency gains.  

The most common strategy is to breach the independence of two adjacent layers 
through co-design, as illustrated above (co-design of processors and programming lan-
guage abstractions, Google’s co-design of GFS and MapReduce, cross-layer design for 
wireless networks). Another move, encapsulation, consists in wrapping the interface of a 
module into another layer—e.g., Google’s GFS and the UNIX file system. Because it re-
uses the existing file system interface, the GFS will also inherit all of its built-in ineffi-
ciencies. These are compensated however by the benefits of increased elasticity of the 
resource, low costs of the components, and co-design of the file and application layer. 
Inserting new layers in the stack can prove extremely difficult. For the last quarter of a 
century, the computer science community has attempted, with limited success, to define 
a standard for a layer (CORBA) that would enable applications to transparently com-
municate with other applications and enable more distributed forms of processing 
(Henning, 2006). 

The most powerful move remains the imposition of an a-priori modular decomposition 
before protocols solidify in both hardware and institutions, as attempted by ISO with 
the OSI model. But the OSI model already conflicted with another architecture, that of 
TCP/IP, illustrating that when it comes to infrastructure, there is no such thing as a 
clean slate. The clean slate is precisely what computer scientists often fantasize about 
when faced with infrastructural change: “Given an excuse to reinvent the whole soft-
ware/hardware stack, this opportunity is also a once-in-a career chance to fix other 
weaknesses in computing that have accumulated over the decades like barnacles on the 
hull of an old ship.” (Asanovic et al., 2009, p. 3) Yet, as Ciborra (2000; 2002), Star & Ru-
hleder (1996) and the preceding sections have suggested, infrastructural change pro-
ceeds just as much through improvisation, bricolage, and drift, than it does through 
planification and control. 

These moves, this persistence provide essential analytical tools for strategic planning, 
for understanding the complex positioning of market players through vertical and hori-
zontal integration, standards, and interoperability. This particularly true at this moment 
in technical history, as networks migrate towards architectures where fundamental 
computing resources—processing, storage, communication—are extensively distributed 
and shared, and their power leveraged for an ever-increasing range of societal func-
tions.  

9. Conclusion 

What kind of work does a theory of digital materiality perform? One can envision the 
difficulties that would arise in attempting to account for architecture without a working 
concept of the tensile strength of steel, of the durability of concrete, of the density of 
wood. Indeed, that these materials differ in their physical characteristics registers on the 
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entire ecology of the field, from construction methods to economics, design traditions, 
professional training, cultural symbolism, etc., and no meaningful analysis can ignore 
these differences. Furthermore, there exist both a precise technical understanding of 
these differences, appropriate to the expert communities concerned with these issues, 
and a lay intuition that informs everyday discourse. Yet, we today have neither techni-
cal language nor intuition for something akin to the tensility, durability, or density of 
computing resources. Without a basic understanding of the material constraints under 
which computing systems operate, essential dynamics that animate the built environ-
ment of the virtual will remain invisible and unaccounted for.  

Furthermore, a fundamental shift in the contemporary social sciences has been to in-
creasingly ground cognition, identity, subjectivity, and collective action in the body and 
its material environment, rather than solely in the brain (Malafouris & Renfrew, 2010). 
The Cartesian heritage of philosophies of mind has made it difficult to account for the 
fact that “as embodied agents, able to move and act in a persisting material world, we 
are demonstrably able to profit from a variety of strategies that make the most of bio-
external sources of order and information.” (Clark, 2010, p. 23) Such a perspective 
yields powerful insights: in STS for example, Donald MacKenzie (2006) has famously 
argued how financial models (e.g., Black-Scholes option pricing) “perform” markets, 
through computerized trading systems, but also through the mundane technology of 
paper — “sheets which floors traders could carry around, often tightly wound cylindri-
cally … so that a quick squint would reveal the relevant prices.” Even more the point, in 
a perceptive analysis of video codecs, the compression algorithms that power the media 
culture of the Internet, Adrian Mackenzie argues the material constraints of computing 
intimately register within our very perceptual systems: 

“Eyes and ears do not have universal, timeless physiological properties. They have me-
dia-historical habits. Electronically mediated visual culture shapes eyes and ears, and 
creates perceptual habits at many levels. For instance, the conventions of the rectangular 
4:3 ratio TV screen, the 16:9 ratio cinema screen, the number of scan lines, or the colour 
models of PAL/NTSC television broadcasts go deep into visual habits. Sensations of col-
our, texture, brightness and level of detail all feed into habits of viewing. The video 
codecs behind DVDs, High Definition Television, mobileTV for 3G cellular telephones, 
RealPlayer, or satellite digital video broadcasts attempts to take those expectations into 
account and meld them with the limited channel capacities of networks, broadcast spec-
trum or cables.” (Mackenzie, 2010, p. 145) 

Indeed, without modes of analysis grounded in the stuff of computing, we shall find 
ourselves in the awkward situation of resorting to theories that account for embodied 
subjects situated and interacting in environments curiously lacking specific material 
constraints.   

Conversely, the analysis proposed here provides a picture of computing dramatically at 
odds with that conveyed by the trope of immateriality. Indeed, it is only recently that 
computing has been approached as “something having a history, rather than just being 
permanently in a state of improvement” (Fuller, 2008). As Haigh (2009) notes, “software 
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tools encapsulate craft knowledge, working practices, and cultural assumptions. …these 
encapsulated qualities are reproduced with each new software revision, often enduring 
for decades.” (p. 7) Indeed, this paper has shown how abstractions, embedded in soft-
ware, hardware, and institutions, endure across decades, acting as conservative forces 
on infrastructure evolution. Yet, much of the historical dialectic between abstraction 
and implementation is absent from computer scientists’ own accounts of their disci-
pline. As Blaauw and Brooks (1997) remark in their monumental study of computer ar-
chitecture, “when reading the professional paper describing the architecture of a new 
machine, it is often difficult to discern the real design dilemmas, compromises, and 
struggles behind the smooth, after-the-fact description.”  

Yet these dilemmas, these compromises, these struggles will increasingly matter, as the 
software infrastructure comes to mediate a breathtaking proportion of social relations. 
As Miller (2005) notes, objects are important “precisely because we do not ‘see’ them. 
The less we are aware of them, the more powerfully they can determine our expecta-
tions by setting the scene and ensuring normative behavior, without being open to chal-
lenge. They determine what takes place to the extent that we are unconscious of their 
capacity to do so.” The inability for a technical field to retrace the historical path of its 
most important and durable contributions has important consequences for its ability to 
critically reflect on its own evolution and the political work inherent in infrastructural 
design. (6) 

The need for such critical reflection is particularly timely at this juncture in the evolu-
tion of computing. The current move towards mobile and cloud computing will intro-
duce fundamentally new economic mechanisms for the valuation of the material re-
sources of computing (7). In turn, the allocation, distribution, and metering of these re-
sources, and the design of the infrastructure that mediates them will become an increas-
ingly visible and contested phenomena. The analytical framework in this paper provide 
means to make the infrastructural work of computing more visible, so that it may be 
engaged with by a broader range of stakeholders. 
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Notes 

(1) One should note that the assignment of functional elements to artifacts is far from a 
well-defined issue — see Preston (1998; 2000). 



 28 

(2) This very trade-off was at the heart of the design of the most widespread modular 
structure in the world — the shipping container. See Levinson (2006), in particular 
chapter 7, “Setting the Standard.” 

(3) In fact, the most efficient garbage collection algorithms are referred to as “stop the 
world” algorithms, as they require the executing program to stop altogether during the 
memory reclamation process, leading to an “embarrassing pause” (Henriksson, 1998). 

(4) See also Hopper and Mauchly (1953) for an early argument for co-design of hard-
ware and programming languages. 

(5) An excellent account of the techno-politics of standardization is von Burg (2001).  

(6) The movement of “software patterns” is one attempt to capture what currently gets 
lost in the current dominant style of technical accounts. See (Buschmann, Henney & 
Schmidt, 2007). 

(7) See for example Amazon’s spot market for its EC2 cloud computing service — 
http://aws.amazon.com/ec2/spot-instances 
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