
A Material History of Bits*

Jean-François Blanchette
Department of Information Studies
Graduate School of Education and Information Studies,
University of California, Los Angeles,
218 GSEIS Bldg., Box 951520 Los Angeles, CA 90095-1520
Tel: (310) 267-5137; Fax: (310) 206-4460
Email: blanchette@ucla.edu
Web: http://polaris.gseis.ucla.edu/blanchette

Abstract

In both the popular press and scholarly research, digital information is persistently dis-
cussed in terms that imply its immateriality. In this characterization, the digital derives
its power from its nature as a mere collection of 0s and 1s wholly independent from the
particular media on which it is stored—hard drive, network wires, optical disk, etc.—
and the particular signal carrier which encode bits—variations of magnetic field, volt-
ages, or pulses of light. This purported immateriality endows bits with considerable
advantages: they are immune from the economics and logistics of analog media, and
from the corruption, degradation, and decay that necessarily results from the handling
of material carriers of information, resulting in a worldwide shift “from atom to bits” as
captured by Negroponte. This is problematic: however immaterial it might appear, in-
formation cannot exist outside of given instantiations in material forms. But what might
it mean to talk of bits as material objects? In this paper, I argue that bits cannot escape
the material constraints of the physical devices that manipulate, store, and exchange
them. Such an analysis reveals a surprising picture of computing as material process
through and through.

1. Introduction

By some accounts, the digital age fundamentally differs from all previous information
epochs insofar as information has finally achieved what it has aspired to throughout
history, namely, unburdened itself from the shackles of matter. As a mere collection of
0s and 1s, digital information is independent of the particular media on which it is
stored—hard drive, optical disk, etc.—and the particular signal carrier which encode
bits, whether magnetic polarities, voltage intensities, or pulses of light.

This purported independence from matter would have two distinct and important con-
sequences: (a) digital information can be reproduced and distributed at negligible cost
and high speed, and thus, is immune to the economics and logistics of analog media; (b)

* This is a preprint of an article accepted for publication in Journal of the American Society for Information
Science and Technology © 2011 (American Society for Information Science and Technology).

 2

digital information can be accessed, used, or reproduced without the noise, corruption,
and degradation that necessarily results from the handling of material carriers of infor-
mation. Immateriality, then, is fundamental to the ability of the digital to upend the
analog world, the reason why any media that can be digitized or produced digitally will
eventually succumb to the logics of digital information and its circulation through elec-
tronic networks—an argument powerfully encapsulated by Negroponte’s (1995) slogan,
“from atom to bits.”

Such a characterization is quite problematic. If bits are not made of atoms, what could
they possibly be made of? In this paper, I argue, as common sense intuitively suggests,
that bits are necessarily both logical and material entities. Furthermore, as the theoretical
and empirical material presented in this paper will demonstrate, computing systems are
suffused through and through with the constraints of their materiality. I thus use mate-
riality as an entry point in the analysis of the computing infrastructure, the infrastruc-
ture that already mediates a breathtaking proportion of social relations — from educa-
tion and healthcare to the search for romantic partners.

The computing infrastructure — e.g., operating systems, networking protocols — is
precisely tasked with relieving users and programmers from the specifics constraints of
the material resources of computation: within a given platform, applications run re-
gardless of processor type, storage media, or network connection. Yet, this abstraction
from the material can never fully succeed. Rather, it stands in dialectical tension with
the evolution of these material resources and with the efficiency trade-offs their abstrac-
tion requires. Materiality then is a key analytical category from which to track the com-
plex positioning of market players as they respond to fundamental shifts in infrastruc-
ture —wireline to wireless, single to multicore, desktop to cloud and mobile. Indeed,
the characteristics of this infrastructure matter a great deal, since it determines the base
material conditions under which applications, services, and devices will perform
(Engler & Kaashoek, 1995).

Furthermore, a focus on materiality highlights that computation is a mechanical process
based on the limited resources of processing power, storage, and connectivity. Indeed,
the computing professions devote much of their activity to the management of these
limitations. In mediating access to the physical resources of computation, infrastructure
software must also manage the competing demands users place on them. A material
analysis foregrounds how systems design must necessarily engage in the oldest political
problem in the world: the allocation of scarce resources among competing stakeholders.
While the shift to cloud computing, the defining infrastructural work of our time, is
typically framed either in the language of technical rationality or that of the information
age’s infinite frontier, materiality provides for an analysis of infrastructure building in
terms of the politics of resource allocation. Indeed, a focus on materiality suggests a
profound disconnect between such political work and the self-portrayal of computing
science as primarily concerned with the design of efficient abstractions (e.g., Wing’s
(2006) “computational thinking”).

 3

There is thus much to be gained — theoretically, methodologically, empirically — from
approaching bits as materials objects. Yet, various factors, including the trope of imma-
teriality, have resulted in inadequate theorization of this fundamental dimension of in-
formation systems. Given this, the argument that follows will require delving into the
nitty-gritty of the technical worlds where the constraints of that materiality are con-
fronted. This exploration will take the form of technical histories of major system ab-
stractions — the von Neumann machine, the file, the packet — that will retrace effi-
ciency trade-offs resulting from shifts in the material basis of computation. Such design
histories reveal the digital world’s independence from material as permanently unset-
tled, under constant pressure to renegotiate the exact terms of that liberation.

This then is a paper about stuff, the stuff of computation (Miller, 2009). I begin by trac-
ing the development of immaterial trope and its impact on professional practice, and
review recent attempts at analyzing the materiality of the digital. Building on this prior
work, I focus on the design strategy of modularity functions as the core mechanism for
abstracting, structuring, and distributing the material resources of computation, at the
cost of efficiency trade-offs. Three empirical sections then illustrate the historical evolu-
tion of such trade-offs in the context of major computational resources — processing,
storage, and connectivity. I conclude by discussing the implications of this argument for
historical studies of computing, systems design, and governance.

2. Information, Immaterial

The trope of immateriality is not a new phenomenon by any measure. While William
Gibson’s Neuromancer (1984) precipitated the term “cyberspace” into public conscious-
ness, it also reiterated for a new set of technologies long-standing themes in the history
of electronic communications, dating back at least to the telegraph: “the promise of tele-
graphy is metaphysical: by annihilating space and time, it allows humankind to escape
physical limitations. The power and ubiquity of electricity are metaphorically attached
to a newly disembodied consciousness.” (Rosenheim, 1997) Networked computers have
provided renewed valence to this promise, as articulated with great lyrical force in the
defining mid-90s manifesto of the Internet, Barlow’s “A Declaration of the Independ-
ence of Cyberspace.” (1996) Barlow placed immateriality at the center of his analysis of
cyberspace as a place altogether distinct from the material world:

“Governments of the Industrial World, you weary giants of flesh and steel, I come from
Cyberspace, the new home of Mind. […] Your legal concepts of property, expression,
identity, movement, and context do not apply to us. They are all based on matter, and
there is no matter here.”

Less lyrical but equally influential, Negroponte’s Being Digital (1995) is also structured
around the liberation of information from matter. Contrasting the costly and laborious
movement of physical goods with “the global movement of weightless bits at the speed
of light” (p. 12) leads him to conclude that, in the digital era, “the medium is no longer
the message” (p. 61).

 4

One might be tempted to dismiss Barlow’s and Negroponte’s manifestos as partially
guided by an irrational exuberance that has since been tempered by, among other
things, the crash of the dot com economy at the turn of the millenium. Yet, for a number
of influential scholars, the immateriality of digital information continues to serve as the
conceptual linchpin for their analysis of the widespread impact of information tech-
nologies.

It is central, for example, to Viktor Mayer-Schönberger recent and widely discussed es-
say on the value of forgetting, Delete (2009). He argues the negligible cost of preserving
and accessing information threatens to usher in an era of “perfect remembering,” with
dire consequences for the fundamental human cognitive process of forgetting. The ar-
gument is predicated on an analysis of digital information as superior to all previous
media “because it lacks the noise problem” (p. 57). This purported ability to escape the
decay wrought by use, reproduction, or time strongly shapes Mayer-Schönberger’s sub-
sequent analysis of potential remedies to the end of forgetting (Blanchette, 2011).

It is also central to Blown to Bits: Your Life, Liberty and Happiness after the Digital Explosion,
a widely praised guide to the information age co-written by MIT’s Hal Abelson, Har-
vard’s Harry Lewis and Ken Ledeen (2008). Again, the analysis is structured around
binary encoding as the ground zero of information representation: “Bits are bits,
whether they represent movies, payrolls, expletives, or poems. Bits are bits, whether
they are moved as electrons in copper wire, light pulses in glass fiber, or modulations in
radio waves. Bits are bits, whether they are stored in gigantic data warehouses, on
DVDs sent through the mail, or on flash drives on keychains.” (p. 294) The impervious-
ness of bits to their material embodiment is highly significant for designing appropriate
information policies. For the first time in history, we are in a position to enact regula-
tions that do not depend on the historical accretions that have heretofore bound to-
gether media and content:

“Law and policies regulating information developed around the technologies in which
that information was embodied. The digital explosion has reduced all information to its
lowest common denominator, sequences of 0 and 1s. […] The universality of bits gives
mankind a rare opportunity. We are in a position to decide on an overarching view of in-
formation. We can be bound in the future by first principles, not historical contingencies.”
(p. 294)

In certain areas of professional practice, the question of digital materiality will play a
fundamental role in delineating the shape of things to come. While records managers
must deal with the shift to electronic documents, the rules that govern the admissibility
and weighing of documentary evidence in courts were largely designed around the
technologies of the printed world—paper, ink, handwritten signatures, stamps, etc.,
with the consequence that long-standing evidential concepts of authorship, originals,
integrity seem altogether inapplicable to the world of digital records. In a recent treatise
on the question, George Paul (2009) argues that reform must necessarily proceed from
the recognition that electronic documents are made from entirely new stuff:

 5

 “Writings in the digital realm are different. They do not depend on the alteration of mat-
ter. Such records are very close to ‘pure information,’ and exist by virtue of a mere suc-
cession of the differentiation of 1s and 0s, distinguished by electricity flowing in machine
systems. In writing today we deal in pure information objects, unfettered by matter. They
can be whisked or shaken or rearranged in an instant.” (p. 19)

This immateriality implies that entirely new methods for establishing authenticity must
be deployed: “Because digital records do not depend on the alteration of matter, a proc-
ess of inspecting them is not a reliable paradigm for testing authenticity.” (p. 21) The
appropriate paradigm, Paul argues, is one based on mathematical algorithms, crypto-
graphic digital signatures, which will offer new (and superior) guarantees for integrity
and authorship.

The above examples thus suggest that the trope of immateriality is more than a conven-
ient metaphor information age pundits reach for to cut through technical complexity.
Rather, it clearly plays an central role in several important arguments over the implica-
tions of our current society-wide shift to digital information. In fact, Hayles (1999) ar-
gues it is fundamental to the project of posthumanity, a worldview that informs and is
articulated within the various scientific disciplines and literary genres that claim cyber-
netics as their intellectual ground—including artificial intelligence, robotics, artificial
life, science-fiction, etc. At the heart of this project lies a fundamental assumption, that
informational patterns (including human consciousness) are ontologically superior to
their (accidental) material instantiations (including the human body); a promise, that
information “can be free from the material constraints that govern the material world”
(p. 13); and a vision, the implication that “if we can become the information we have
constructed, we can achieve effective immortality.” (p. 13) Digital information systems
provide a particular valence to this project, given that

“… reality at a fundamental level is seen as form rather than matter, specifically as infor-
mational code whose essence lies in a binary choice rather than material substrate. […]
The assumption that form occupies a foundational position relative to matter is especially
easy to make with information technologies, since information is defined in theoretic
terms […] as a probability function and thus as a pattern or form rather than as a materi-
ally substantiated entity.” (pp. 232-232).

By all measures then, philosophical commitments to immateriality should not be un-
derestimated. But even if a critical exercise were to corral the rhetorical efficacy of such
a position, what alternative models exist? If digital information is not immaterial, in
what ways is it material? What relevant physical constraints should a theoretical model
of the materiality of digital information capture? Understandably, it is only recently that
scholars have begun seriously investigating analytical frameworks that might provide
appropriate answers to these questions.

3. Information, Material

A direct consequence of the prevalence of the trope of immateriality is the dearth of re-
search on the topic, and it is only recently that researchers have self-identified as explor-

 6

ing the materiality of digital information. Several of these researchers have been in-
spired by previous work in the field of descriptive bibliography, work that sought to
link the material conditions of the production, expression, and reception of printed ma-
terials to their production of semantic meaning (McKenzie, 1985/1999). For example,
Drucker (2009a) notes “the stripping away of material information when a document is
stored in binary form is not a move from material to immaterial form, but from one ma-
terial condition to another.” The task then is to map how the particular material condi-
tion of electronic media makes possible or impossible new potentialities for reading. In
a similar vein, Hayles (2002) has explored the theme of materiality as manifested in elec-
tronic literature, arguing that literature has traditionally conceived of the body of the
book, of the writer, and of the reader in terms of “assumptions specific to print,” and
that electronic media brings them together in new configurations, providing us with
“an opportunity to see print with new eyes.”

Knoespel and Zhu (2008) suggest the popular characterization of cyberspace as “an
ethereal escape from the filthy, hopeless ‘meat’ world” is inherited from a Cartesian
dualism that posits a strict dichotomy between language (spirit) and the material world.
Moving beyond such “romantic notions of immateriality,” they suggest computing sys-
tems are characterized by a “continuous materiality,”

“ … a wide spectrum of materiality activated by a hierarchy of codes that moves from
‘lower’ machine code to ‘higher’ readable computer languages and to codes in general
(structural, legislative, social, cultural, etc.). Each level of code engages natural language
and the physical world in different ways, varying from the shifting voltage of computer
circuits to our everyday activity. Altogether, the hierarchy of codes constructs a field of
diverse materiality that is continuous and interconnected.” (p. 236)

Continuous materiality accounts for the materiality of computing on several levels:
through the immanence of embodied experience in language, manifested by the dual
registers through which code operates. Instructions to machines (open window, cut and
paste) are also apprehended by humans via the metaphorical function of language.
Even while programmers mostly operate within strictly positivists conceptions of lan-
guage, computer code creates relationships among multiple symbolic systems, those
necessary to move the cogs of the machine, and those necessary for those operations of
the machine to be situated within language, and thus, social order. At the same time,
multiple kinds of computer code co-exist within the computer, each potentially mediat-
ing among different codes pertinent to different social systems.

In a similar vein, Warner (2009) has argued that the linguistic concepts of syntagm and
paradigm, and the information theoretic concepts of message and messages for selec-
tion are derived from a common material basis, that of the line and the surface. He sug-
gests that “understanding the material basis for concepts from linguistics and informa-
tion theory, and locating them precisely in relation to current material realities, might
then yield a basis for a fuller understanding of the effects of computational procedures,
themselves constrained by a common and inherited material reality.” (p. 198)

 7

Kirschenbaum (2008) has offered the most original and sustained investigation of the
physical constraints that obtain on digital media, through his extensive analysis of the
mundane, the ubiquitous, and yet opaque and mysterious hard drive, the inscription
workhorse of the computing age, and yet, until Kirschenbaum’s, a device bereft of sus-
tained analysis.

His first line of attack concerns the curious discrepancy existing between the literary
critics’ view of electronic writing as ephemeral, fundamentally unstable, forever malle-
able and that of computer forensics experts, whose livelihood is predicated on the re-
covery of the numerous traces digital objects leave behind, even after their presumed
deletion. The confrontation rapidly exposes the influence of a certain “media ideology
of electronic text … the notion that in place of inscription, mechanism, sweat of the
brow (or its mechanical equivalent, steam), and cramp of the hand, there is light, rea-
son, and energy unleashed in the electrical empyrean.” (p. 39) Kirschenbaum’s project
then is to define “an approach capable of accounting for the ways in which electronic
data was simultaneously perceived as evanescent and ephemeral in some quarters, and
remarkably, stubbornly, perniciously stable and persistent in others.” (p. 27) His answer
rests on the distinction between two types of digital materiality, “forensic” and “for-
mal.”

Institutions with highly detailed protocols for controlling the creation, access, and even-
tual disposal of sensitive, classified information have been long aware that deleting
digital information from hard drives requires more than simply moving it to the trash
icon. Various methods and procedures have been developed to combat the phenome-
non of “data remanence,” the residues left behind by the physical processes used to
write and erase digital data on electronic storage media — from overwriting to media
destruction. Because the performance of these processes varies from one inscrip-
tion/deletion to the next — due to variations in the magnetic substrate and the exact
positioning of the read/write head — earlier data may still be accessed in the form of an
“erase band” along the edge of magnetic track. Thus, in ways that points to its shared
condition with other media, the storage of digital information exhibits specific con-
straints on “reversing or obscuring what are tangible interventions in a physical me-
dium.” (p. 60) “Forensic materiality” thus captures the application of the principle of
individualization, “the idea that no two things in the physical world are exactly alike”
(p. 10) to digital storage. As Kirschenbaum points out, “that the scale here is measured
in mere microns does not change the fact that data recording in magnetic media is fi-
nally and fundamentally a forensically individualized process.” (p. 63) And it should
come as no surprise that the social adoption of a new writing technology gives birth to
“an eruption of tools and techniques to fix, expunge, and recover their meaning-bearing
marks and traces.” (p. 71)

Kirschenbaum’s concept of “formal materiality” encompasses two different dimensions.
The first suggests one possible answer to the question of how digital writing so com-
pelled academics to uncritically characterize it as free from the material. Borrowing an
insight from Daniel Hillis (1999), Kirschenbaum notes how computers’ ability to con-

 8

tinually perform error-correction enables them to present digital information as “noise-
less.” As he notes, “computers are unique in the history of writing technologies in that
they present a premeditated material environment built and engineered to propagate an
illusion of immateriality.” (p. 135) The second dimension of formal materiality points to
file formats and the structuration they impose on digital data as powerful constraints on
mutability of bits — for example, in the case of JPEG images, different levels of com-
pression result in images perceptually indistinguishable, but from which some informa-
tion has been irretrievably lost. Similarly, the encoding of data in a file format enables
or disables specific kinds of computational manipulation — e.g., a TIFF image of a
document does not support search in same way a text file will. Thus, despite the flexi-
bility and mutability of digital information, “the play of code is not always infinitely
fungible and arbitrary—transformations are not always reversible, nor are all transfor-
mations always possible and achievable.” (p. 149)

In spite of these insights, scholars still find it difficult to characterize the digital in mate-
rial terms. For example, Leonardi (2010) notes the material properties of artifacts are
those that enable and constrains them in ways that “simply cannot be overcome,” e.g.,
the opacity of wood. Proceeding from the premise that “a digital technology like a word
processing program is an artifact that is not comprised of matter,” he then concludes
that “moving away from linking materiality to notions of physical substance or matter
may helps scholars of technology integrate their work more centrally with studies of
discourse, routine, institutions and other phenomena that lie at the core of … social the-
ory, more broadly.”

Building on the works outlined above, I propose in the following sections an analytical
framework that may in fact integrate digital materiality with a broad range of social
scientific disciplines. The primary mechanism that mediates and structures this materi-
ality is the design strategy of modularity.

4. Modularity and layering

Information systems can be divided into three major types of components: applications
that provide services to users, usually according to some task model or metaphor (e.g.,
“the desktop,” “word processing,” “show slides”); infrastructure software that mediate
applications’ access to shared computing resources, i.e., the physical devices that provide
processing power, storage, networking. Infrastructure software may be located in oper-
ating systems on commodity computing devices, embedded in hardware (e.g., firm-
ware), or execute on specialized computers (web servers, routers, etc.). The interoper-
ability of applications, infrastructural software, and devices is an extraordinary engi-
neering achievement. The sending of a simple email over the Internet requires the cor-
rect functioning of thousands upon thousands of heterogeneous material and logical
components, connected together in a network of staggering complexity. Such a system
must be able to accommodate, among other things, growth in size and traffic, technical
evolution and decay, diversity of implementations, integration of new services to an-
swer unanticipated needs, emergent behaviors, etc. The solution adopted by the soft-

 9

ware and hardware industry to manage this complexity is the design strategy of modu-
larity, a strategy with widespread application in manufacturing (from automobile to
disposable razors), architecture, and education (curriculum design).

Modularity is a strategy for designing the architecture of an artifact, in particular, the
relationship of its function to its structure (Ulrich, 2007). The design of a disposable
blade safety razor, for example, realizes two distinct functional requirements, cutting
hair, and hand manipulation (1). Safety razors are typically structured in two separate
components (or modules), the blade and the handle, each implementing a distinct func-
tional requirement. The blade and handle components are de-coupled, insofar as a
change in one component (gradual wear of the blade) will not result in a complete
breakdown of the artifact, since it can be replaced. A modular architecture is one that
realizes a one-to-one mapping between functional requirements and components, as
well as de-coupled interfaces between those components (Ulrich, 2007).

Such separation of functional specification from implementation has multiple advan-
tages for computing systems design. As early as 1959, McGee noted that pressures to
extract maximum value from expensive data processing equipment led programmers to
“hand-tailor their programs,” rather than developing more general techniques. This
resulted in “first of all, a prodigious outlay of programming time; and secondly, a run-
ning program which is ‘chiseled in granite’ and which effectively defies any attempts to
modify it at a later date” (McGee, 1959). 25 years later, Parnas argued that modular de-
sign provided just the solution to this vexing issue:

“it should be possible to make a major software change as a set of independent changes
to individual modules, i.e., except for interface changes, programmers changing the indi-
vidual modules should not need to communicate. If the interfaces of the modules are not
revised, it should be possible to run and test any combination of old and new module
versions.” (Parnas, Clements & Weiss, 1984, p. 409)

In addition to providing a strategy for managing change, modularity also reduces sys-
tem complexity by division of labor: modules can be assigned to different teams, each
module small enough to be fully comprehend by a single individual (Blaauw and
Brooks). The working of modularity is plainly visible when it comes to the widely dif-
ferent hardware components that can connected to computer systems through a single
peripheral interface specification—e.g., USB or SCSI. Such an interface specifies both the
services which the particular device must provide (e.g., storage and retrieval of bits,
status information, etc.) and the software and hardware language necessary to interact
with the module (e.g., connector pins assignment, with corresponding control signals).

Layering is a specific flavor of modularity where modules are organized in a series of
client-server relationships: each layer is a server to the layer above, and a client to the
layer below. While the best- known example of layering in software infrastructure is the
famous 7-layers deep “network stack” defined by the ISO OSI Model (Zimmermann,
1980), each computing resource (i.e., network, storage, and processing) is accessed
through a similar stack of layers. In each case, bits move up from their grounding as
signals in some physical media (fiber optic, magnetic drive, electrical wires) to binary

 10

information organized according to units defined by each layer (file, datagram, etc.)
Applications access the stacks through “application programming interfaces” (APIs) to
the various modules of the operating system.

Trade-offs

The plug-and-play possibilities that modularity bring to systems design are often re-
marked on—it is for example one of five essential principles of new media identified by
Manovitch (2007), and it is at the core of Zittrain’s (2009) analysis of the “generative ar-
chitecture” of the (early) Internet. That these possibilities must be understood together
with the particular constraints modular designs bring to the table is however rarely re-
marked on. As McGee remarked, the most efficient programs are hand-tailored, provid-
ing no generalization whatsoever; conversely, highly general abstractions will result in
significant loss in efficiency. This is because the specification of an abstraction (the inter-
face) general enough to accommodate a wide range of implementations necessarily in-
volves trade-offs, “between the freedom that the abstraction provides and the efficiency
of possible implementation.” (Agre, 1997)

A simple example can help illustrate this concept. Consider the problem of organizing a
closet full of disparate objects — e.g., sporting equipment, children toys, craft supplies,
clothing. If the primary goal is to pack as many objects in the closet as possible, the best
approach is to pack based solely on objects’ size and shape, using the closet itself as a
box. A much more practical solution however will use a widely available modular
structure, storage bins, and group objects by categories, filling and stacking as many
bins as will fit. In contrast with the first solution, packing, locating and retrieving ob-
jects is greatly simplified, but this convenience comes at the expense of overall density:
bins will be more or less full, and they will fit more or less snuggly in the closet itself.
Different bin sizes, as well as different types of objects, will result in different space in-
efficiencies (2).

This is the classical dilemma of high-level programming languages: the more a lan-
guage’s constructs abstract away from the underlying physical machine, the less effi-
cient the resulting code tends to be. For example, functional languages (e.g., Lisp) re-
lieve programmers from the burden of requesting and releasing memory locations for
variables, allowing them to proceed as if memory was an inexhaustible resource. But
memory is in fact, always a finite resource, and instead of manual management by us-
ers, “garbage collection” routines must reclaim obsolete memory locations, a process
that itself consumes processing power, as it seeks to reconstruct after-the-fact the mem-
ory space allocated and de-allocated by the programmer. The programming conven-
ience of a boundless memory is thus incurred at the cost of processing resources. This
makes garbage collection particularly inappropriate for real-time applications (e.g.,
software that implements anti-lock brakes), given the routine may request processing
power at a crucial moment (3). The point here is that the trade-offs implied by modular-
ity will not affect all applications equally, or even the same application under all cir-
cumstances. Yet, the design trade-offs inherent in abstracting from physical resources
are rarely acknowledged in the computing literature.

 11

The digital abstraction

These trade-offs manifest themselves all the way down to the lowest level of the stacks,
the physical layer. Agre (1997) notes the most fundamental abstraction computers rely
on is the “digital abstraction,” the transformation of physical signals into discrete binary
quantities. From Tinker Toys to hydraulic valves, as long as a material can support the
basic operations of the digital abstraction, it can be used as the basis for a computing
system (Hillis, 1999). However, each of these materials brings its own characteristics to
the performance of these operations, including susceptibility to interference, frequency
of mechanical failure, relative lack of speed, resistance and attenuation, and of course,
cost.

The digital abstraction can be maintained in spite of this “noise” because, as Kirschen-
baum notes, through error-correction codes, buffering, and other techniques, computers
can self-efface the static—scratches on a record, smudges on paper—that typically sig-
nals the materiality of media:

“All forms of modern digital technology incorporate hyper-redundant error-checking
routines that serve to sustain an illusion of immateriality by detecting error and correct-
ing it, reviving the quality of the signal, like old-fashioned telegraph relays, such that any
degradation suffered during a subsequent interval of transmission will not fall beyond
whatever tolerances of symbolic integrity exist past which the original value of the signal
(or identity of the symbol) cannot be reconstituted.” (p. 12)

These mechanisms, formally described in information theory, are used throughout net-
worked computing systems: the impact of media irregularities on hard drive platters
can be mitigated through the use of error-correction codes; the unpredictability of net-
work bandwidth can be mitigated through the use of buffering, ensuring smooth deliv-
ery of latency-sensitive content—Hillis (1999) calls this “the essence of digital technol-
ogy, which restores signal to near perfection at every stage.” It is this ability to ceasessly
cleanup after its own noise that so powerfully enables computers to seemingly sever
their dependency on physical processes that underlie processing, storage, and connec-
tivity.

Yet, the physical characteristics of a resource (be it computation, storage or networking)
cannot simply be transcended, and noise can only be conquered at the expense of other
resources. For example, manufacturers must design electronic circuits using a voltage
differential between 0 and 1 broad enough to fight off interference by galactic cosmic
rays (“single event effects”), at the cost of increased power consumption (May &
Woods, 1979); error-correcting codes, widely used to protect against transmission inter-
ference, result in both data expansion (and thus, reduced capacity) and increased proc-
essing load. In the later case, designers will choose among different codes according to
both the expected profile of the noise (frequency, intensity), and the resource trade-offs.
Once again then, independence from the material can only be obtained at the costs of
certain trade-offs.

 12

Sharing

Computing resources (processor, storage, network) are not only finite, but to maximize
their efficiency and return on investment, must be shared among multiple applications
and users. Thus, abstractions not only relieve programmers from the need to manage
the finiteness of resources, but also from the need to manage how they are shared with
other applications, competing for their share of limited processing power, memory,
bandwidth, storage. This is not only for the purpose of programming convenience, but
because policies for sharing must implemented at the system (rather than application or
user) level. Once more, this will inevitably involve various trade-offs, favoring some
types of applications over others. For examples, packet switching protocols maximize
the utilization and sharing of finite communication links by breaking down users’ mes-
sages in small packets, and routing them to their destination using a ‘best-effort’ policy
that impacts unevenly latency-sensitive (voice, streaming video) and latency-insensitive
(browsing, email) applications.

Stack equilibrium

Two opposing forces are thus at play with respect to the make-up of the stack that ob-
tain at any particular moment of transition in technical history: one the one hand, the
freedom provided by modular design and the resulting efficiency trade-offs; on the
other hand, the primary drive of computing systems design, greater efficiency, as
measured by “the amount of useful computational work that gets done in the service of
specified goals by a given amount of machinery in a given period of time.” (Agre, 1997)
It is the conflicting pressures of these two forces that determine the evolution of the lay-
ered abstractions that link digital information to its material basis.

In the next three sections, I illustrate the operation of these forces by tracing the histori-
cal definition of major abstractions within the processing, storage, and networking
stacks, and their evolution as they respond to changes in the material basis of comput-
ing resources. In particular, I will highlight how the drive to efficiency manifests itself
as the pressure to co-design layers, thus violating the fundamental principle of modular
independence itself.

5. The processing stack

A processor, or central processing unit (CPU), contains circuit logic designed to execute
programs, i.e., sequences of instructions. These instructions enable a programmer to
access three basic set of resources: (a) numerical routines, typically provided by the
arithmetic-logic unit (ALU); (b) memory management services, i.e., reserving, storing
to, and reading from memory locations; and (c) flow control, i.e., selecting the next in-
struction to be executed, based on conditional branching, jumps, etc.

Each processor (or processor family) provides its own set of instructions, each directly
operating on the processor’s hardware by performing the necessary sequences of logical
operations (opening and closing gates, moving data to and from memory, etc.) to pro-
duce the appropriate result. The set of instructions of a processor is its machine language,

 13

and provides the interface to the processor conceived as a module. The computational
model expressed by an instruction set is referred to as its “instruction set architecture”
(ISA).

The designers of a processor and its accompanying machine language must contend
with the fundamental trade-offs between convenience of instructions to programmers
and efficiency of implementation. That is, in machine language, “the expressions are
costly, … each operator and variable in the vocabulary must be implemented and real-
ized by the interpreting mechanisms. Each bit in a machine-language program occupies
a costly memory cell and must be obtained from that cell at the expense of costly time.”
(Blaauw & Brooks, 1997, p. 17) The computer architect thus evaluates each expression of
the machine language against her “bit budget”, the amount of memory locations she
has to work with, as well as the “bit traffic” each expression will generate.

While early computers were always programmed directly in machine language, the dif-
ficulty of writing and debugging machine-level code of increasing difficulty generated
interest in the development of “high-level” programming languages that would pro-
vide more readable notations for specifying instructions, leading to greater efficiencies
in program development and tuning. Before they can be executed by a processor, pro-
grams written using high-level programming languages must first be processed by a
compiler, a program which takes a program in a source language and translates it into an
equivalent program in the machine language of a given processor. A program in ma-
chine language is “that representation of programs that resides in memory and is inter-
preted (executed) directly by the hardware.” (Blaauw & Brooks, 1997, p. 16)

High-level programming languages provide several services for programmers that
simplify access to and use of the basic resources of the processor, such as automatic
memory management, data type checking and enforcement. They also extend the un-
derlying computational model of the machine, by providing for the creation of new
data types and operators, broader ranges of control (e.g., recursion), and the ability for
programmers to create their own abstractions (functions, objects). In other words, “a
language rebuilds the machine to provide more convenient facilities, and a program
further rebuilds the language to provide facilities closer to the problem to be solved.”
(Sethi, 1996, p. 11) The computational model implemented by programming language
thus defines “virtual machines” that run on the basic physical hardware implemented
by the processor. The basic trade-off for this convenience is one of efficiency, that is, the
code generated automatically by a compiler typically takes longer to run and occupies
more space than hand-crafted machine language code. Despite this, most programmers
today resort to high-level languages, and compilers designers are tasked with reconcil-
ing the abstractions offered by a language’s computational model, and its implementa-
tion in the machine language of the underlying machine. However, the independence of
these two layers of abstraction—machine vs. programming language—is under con-
stant pressure.

 14

Co-evolution of layers

In certain cases, the abstractions defined by high-level languages may lead to design
decisions at the level of implementation, in top-down fashion. In the 1980s, the RISC
chip design revolution proceeded in part from the observation that the convenience of
the abstractions provided by high-level languages had become expected by program-
mers:

“instruction sets for conventional CPUs have been defined with an implicit assumption
that many programmers will use assembly language. … But, increasingly, programmers
do not use assembly language, except where optimal performance is essential or machine
functions are required that are not reflected in the source language. “ (Radin, 1983, p. 40)

Given this, it made sense to design chips that directly implemented high-level abstrac-
tions with improved efficiency (4). In 1980, IBM experimented with the design of a
minicomputer whose machine language was co-designed with an optimizing compiler
for the PL.8 language (a subset of PL/1). In similar fashion, from the 70s through the
90s, several generations of machines providing hardware support to run Lisp programs
more efficiently were developed for the AI community by both startups and established
computer manufacturers, including Symbolics, Xerox, and a Texas Instruments/Apple
partnership (Pleszkun & Thazhuthaveetil, 1987). Other machines were developed to
support the object-oriented strategies of Smalltalk (e.g. Ungar, Blau, Foley, Samples &
Patterson, 1984). As viable commercial products, all succumbed to the rise of commod-
ity personal computers, whose cost/performance ratio negated much of the commercial
rationale of these efforts.

Another type of specialized processor design, parallel architectures, has also suffered a
long history of commercial failures, despite the dazzling promise of increasing process-
ing power by several orders of magnitude. Parallel architectures altogether eschew the
von Neumann model of serial computation (first proposed in 1945 in the context of the
EDVAC), which forces algorithmic design through the very narrow funnel of sequential
programming. Reducing all problems to sequences of atomic instructions has proved
enormously convenient for programmers, but has resulted in serious design constraints:
because of this “von Neumann bottleneck,” much of a conventional processor’s cir-
cuitry remains inactive at any one moment, often waiting on the much slower memory
subsystem. Thus, speed increases over the last 40 years have been predicated on a strat-
egy of increasing clocking (the speed at which instructions are processed) and transistor
density:

“the implicit hardware/software contract was that increased transistor count and power
dissipation were OK, as long as architects maintained the existing sequential program-
ming model. This contract led to innovations that were inefficient in terms of transistors
and power […] but that increased performance while preserving the sequential pro-
gramming model.” (Asanovic et al., 2009)

This contract has become unsustainable, as chip designers have now reached the
“power wall,” i.e., physical limitations on the ability of transistors to dissipate heat effi-
ciently (resulting in burning hot laptops!). In 2004, Intel announced all future product

 15

designs would be based on multicore architectures, the packing of multiple processors
on a single chip assembly. The decision signaled a turning point in the evolution of
computing: “the La-Z Boy era of program performance is officially over, and program-
mers who care about performance must get up off their recliners and start making their
programs parallel.” (Patterson, 2010)

This will require more than a simple motivational exercise: by all accounts, breaking the
dominance of the Von Neuman model is as formidable a challenge as the computing
professions have ever faced, a profound break with existing programming practice. It
will require a greater commitment to parallel methods in the computer science curricu-
lum, but just as importantly, it will require the development of new abstractions that
will shield programmers from the inherent complexity of parallel programming. Fur-
thermore, this new stack of abstractions will face the difficult task of simultaneously
supporting applications that leverage the power of multicore architectures, while still
ensuring that “legacy code still works with acceptable performance.” (Asanovic et al.,
2009)

These pressures on the evolution of the processing stack illustrate the tension between
the freedom afforded by modularity, and the inefficiencies that it necessarily brings into
play: in this case, a single modular design, the von Neumann model, ruled the stack for
over 60 years. This dominance resulted in economies of scale that defeated repeated
attempts at creating a viable market for alternative, parallel architectures, despite their
promise for increased processing power. The persistence of the model was further en-
abled by a computer science curriculum committed to the convenience afforded by se-
quential programming. Yet, changes in the material basis of computing resource neces-
sarily ripple up the stack, as exemplified by efforts to design new programming abstrac-
tions for parallel architectures.

6. The Storage Stack

In contrast to the electronic components that make up the processor, the media lever-
aged over the years to store and access data—punch cards, magnetic tapes, hard drives,
flash memory—profusely signify their materiality, through mechanical noise, slow
speed, poor reliability, and sensitivity to wear. The abstractions that make up the stor-
age stack must thus provide consistent services to applications in the context of wide
discrepancies in the performance characteristics of storage technologies. The defining
characteristic of these devices is their reliance on mechanical motion. From punched card
to magnetic tape to disk drives, large-scale external storage has been realized by the
physical movement of data, spread over one-dimensional (tape), two-dimensional (flop-
pies), or three-dimensional surfaces (hard drives).

Overall, the use of mechanical motion, however finely controlled, does not sit comforta-
bly with the world of solid-state electronics. The most important friction is the huge dif-
ferential in access time between internal and external memory. In contrast to the
movement of bits in strictly electronic hardware, the reading and writing of bits on ex-
ternal media is extraordinarily slow, from four to six orders of magnitude slower! Thus,

 16

in applications that process large amounts of data, fetching and writing data to and
from external memory is often the main performance bottleneck in computation. As
Blaauw and Brooks (1997) note,

“Four orders of magnitude is an immense ratio. Imagine a CPU doing an operation each
second; a disk half-rotation 104 slower takes three hours! … While a disk turns half
around or a tape accelerates to reading speed, a workstation CPU can execute perhaps
100,000 instructions.” (p. 453)

This differential has been an important constraint from the very first days of digital
computer design. In the 50s, experimented with a wide range of media and technologies
as potential candidates for both internal and external storage: in the first case, these in-
cluded Williams tubes, mercury delay lines, and magnetic drums, etc. (Eckert, 1953); in
the second case, magnetic tape, photographic film, paper tape, magnetic wire and mag-
netic drums (Snyder, 1952). While speed was a primary consideration, design choices
were, as Eckert pointed out, “strongly influenced by the cost of achieving that speed,
and by the requirements of the other circuits.” (p. 1393)

Blocks are one structure that aims to reduce the impact of the speed differential. The
block size of a device is typically the amount of data transferred to/from the device in a
single operation:

“Access varies greatly because of medium motion. Finding an arbitrary bit may take quite
a long while. Finding the next bit on the track is very quick—a fraction of a microsecond.
Therefore, if there is the slightest chance … of needing the next datum after finding the
one sought, one is well-advised to read it also into memory. This logic leads inescapably
to the reading and writing of data in blocks whose size is limited chiefly by the cost and
availability of memory space. If it takes a long time to go to the well, one should bring
back as much water as the bucket will hold.” (Blaauw & Brooks, 1997, pp. 453-454)

The trade-off here is that because the block, rather than the bit, becomes the fundamen-
tal unit for reading and writing to storage, results in significant amounts of wasted
space for applications that generate large quantities of small files.

Furthermore, storage devices strive to efficiently provide two fundamental and some-
what contradictory objectives: providing the highest throughput possible in reading
and writing sequential streams of bits, and minimizing the time it takes to locate a par-
ticular datum on the media—so-called “random access.” (Buchholz, 1963, p. 91) To op-
timize for both of these features requires to carefully balance the structures that govern
the placement of the data over the media (e.g., tracks, cylinders) with the mechanisms
that govern the motion of data.

The file system interface

The primary abstraction that governs the relationship between applications and storage
device is the file. The story of this abstraction must begin with the prominent role
played by punched-card equipment in data processing until the late 1950s, a role now
recognized in several studies (e.g., Campbell-Kelly, 1990; Yates, 2005). Punch cards
served as input and output media, as well as long-term storage to the tabulating system.

 17

One punch card and its various data “fields” constituted a “record,” while a collection
of cards constituted a “file” (Haigh, 2009).

The development of the electronic computers that would eventually replace tabulators
was a gradual process, in which the issue of storage media played a defining role. Not
only did the efficiency and cost of computers depend to a great extent on suitable tech-
niques for fast internal direct access memories, but their ability to integrate with exist-
ing input, output, and storage technologies (i.e., punched cards) was a crucial factor in
ensuring their adoption. A computer such as the IBM 650, the world’s first mass pro-
duced computer, remaining in production from 1953 to 1969, encompassed the full
range of memory devices and input-output technologies available, including a disk
drive, a magnetic tape drive, units for reading and punching cards, as well as tape-to-
card and card-to-tape conversion units. Because of this extensive variety of storage de-
vices, by 1957, IBM designers “were already distinguishing between logical and physi-
cal aspects of data storage in tape files, a key concept for the decoupling of application
programs from specific hardware configuration and file formats” (Haigh, 2009, p. 10).

The designers of the UNIVAC, one of the 650’s main competitors at the time, chose to
make reliance on magnetic tape a distinguishing feature of their system. Indeed, “for
most customers, what was revolutionary about the UNIVAC was not so much its
stored-program design or even its electronic processor, it was the use of tape instead of
punched cards” (Ceruzzi, 2003, p. 30). Yet, the logical organization of the information
was directly copied from that used in tabulating systems:

“The concepts of records, files, fields, special codes to mark the beginning and end of
files, and the merging information from one file to another (all ubiquitous in computer
systems today) have their origins in electromechanical punched card machine methods
dating back to the 1930s. Records using the same basic format were laid out sequentially
along the strip of magnetic tape. Additional codes were introduced to provide checks
against corrupted data.” (Haigh, 2009, p. 7)

The influential time MULTICS operating system that emerged in the early ‘60s to provide
time-sharing for mainframes included a “general-purpose” file system for external stor-
age. Its design included features still widespread today, including hierarchical directo-
ries, symbolic links (i.e., aliases), and access control. MULTICS’ designers clearly saw
the role of the file system as insulating users (i.e., programs) from the complexity of
storage:

“In most cases a user does not need to know how or where a file is stored by the file sys-
tem. A user’s primary concern is that the file be readily available to him when he needs it.
In general, only the file system knows on which device a file resides. The file system is
designed to accommodate any configuration of secondary storage devices. These devices
may cover a wide range of speeds and capacities. All considerations of speed and effi-
ciency of storage devices are left to the file system. Thus all user programs and all other
systems programs are independent of the particular configuration of secondary storage.”
(Daley & Neumann, 1965)

 18

Ritchie and Thomson’s design for UNIX envisioned an even more prominent role for
files, stating, “the most important job of UNIX is to provide a file system.” (Ritchie &
Thompson, 1974) In fact, the file is the dominant abstraction UNIX provides to pro-
grammers for any input-output device, from paper tape to hard drives. Ritchie and
Thompson proposed a new data structure, the “inode,” that would release the file sys-
tem from the need to determine in advance how large a disk file might eventually grow
and improve the dynamic sharing of storage space among users. An inode is an exten-
sible tree structure that provides an index to the disk location of the blocks containing
the file data. As the file grows, such “direct blocks” are replaced by “indirect blocks”
that, instead of data, contain the disk location of the direct blocks.

Such a dynamic data structure provides enormous flexibility to the file system —it may,
for example, grow the file as large as needed, and rapidly reclaim disk space for other
users as the file shrinks. The (significant) downside is that as different users and appli-
cations create, expand, shrink, and delete files on shared storage, the contents of a file
become randomly distributed over the storage device, with consequential negative im-
pact over sequential access. Subsequent implementations of the original system have
corrected for this problem by increasing the block size (at the cost of increased wasted
space) and optimizing the sequential placement of blocks, by trying “to allocate new
blocks on the same cylinder as the previous block in the same file.” (McKusick, Joy, Lef-
fler & Fabry, 1984) There is thus content tension between the freedom provided by a
system abstraction (grow the file as needed), and the inefficiencies it introduces with
respect to the spatial placement of data.

The syntax and behavior of the UNIX file system has been standardized as part of the
IEEE POSIX process, providing a uniform interface to the various services its pro-
vides—file creation, deletion, reading, writing, seeking, etc. It is this standard interface
that provides the glue for the design of the Google File System (GFS) suitable for the
processing needs of its software engineers (i.e., working with files typically in the multi-
GB range) and for a computing environment consisting of “hundreds or even thou-
sands of storage machines built from inexpensive commodity parts.” (Ghemawat, Go-
bioff & Leung, 2003, p. 29). The main data structure of the GFS is a “super inode” that
sits above the UNIX file system. Like a regular inode, it contains pointers to either direct
or indirect blocks, with the distinction that these blocks are ordinary UNIX files, which
may be located on any number of drives. The UNIX file system abstraction is thus “en-
capsulated” by the larger abstraction defined by the GFS, with quite different parame-
ters of course — the block size is a whopping 64 MB, over the 8K common in UNIX im-
plementations. In designing the GFS, Google engineers enjoyed a considerable advan-
tage: the freedom to breach the independence of the application and file system layers, a
freedom that otherwise rarely obtains in software infrastructure design:

“One thing that helped tremendously was that Google built not only the file system but
also all of the applications running on top of it. While adjustments were continually made
in GFS to make it more accommodating to all the new use cases, the applications them-
selves were also developed with the various strengths and weaknesses of GFS in mind.

 19

[…] We could push problems back and forth between the application space and the file-
system space, and then work out accommodations between the two.“ (McKusick & Quin-
lan, 2009, p. 45)

Such accommodations are detailed in a discussion of MapReduce, Google’s in-house
parallel programming environment: “We conserve network bandwidth by taking ad-
vantage of the fact that the input data (managed by GFS) is stored on the local disks of
the machines that make up our cluster. […] When running large MapReduce operations
on a significant fraction of the workers in a cluster, most input data is read locally and
consumes no network bandwidth.” (Dean & Ghemawat, 2008) That is, by breaching the
independence of the GFS layer, MapReduce can thwart the potentially massive ineffi-
ciencies of a highly parallel environment. Thus, even in the context of Google’s mas-
sively distributed data processing centers, the issues remain the same: how to reconcile
a powerful abstraction that provides considerable convenience to programmers with
the need to optimize the spatial organization of the data for particular types of process-
ing.

7. The Network Stack

The network stack provides applications with services ensuring the error-free transmis-
sion of structured bits from one computer to another with the highest throughput (ca-
pacity) and lowest latency (time in system) possible. This must be accomplished in the
context of significant material constraints: (a) signals must travel over physical media—
whether air, copper wire or fiber optic—each bringing different characteristics to the
job, with regard to susceptibility to interference, dissipation, capacity, and cost; (b) the
physical infrastructure necessary to provide point-to-point communication is enor-
mously costly, and consequently driven by particular economic dynamics, including
network effects, and economies of scale and density; (c) these costs require that com-
munication links to be shared among multiple users, with the corresponding need for
fair policies to manage traffic and its attendant inefficiencies.

Materials
Common media for digital communication include twisted-pair (telephone wire), coax-
ial cable (cable television), fiber optic, and radio waves. Like storage, a chief characteris-
tic of communication media is its unreliability, including attenuation, the gradual
weakening of the signal due to the physical resistance of the media to electrical current;
and noise, the gradual distortion of the signal by a wide variety of sources, including
interference from other wires, radio signals, the physical environment, etc. Because at-
tenuation and noise determine the capacity of the media (Czajkowski, 1999), extensive
measures must be deployed to counter their effects, including signal amplifiers and ca-
ble shielding.

Additionally, signal processing techniques help ensure the correct transmission of data
over an unreliable channel: modulation translates digital data into a form suitable for
transmission for a given physical medium, while error-correcting codes use redundancy
to protect sequences of bits against noise. Different coding and modulation techniques

 20

are appropriate given the specific noise characteristics of the transmission channel and
the amount of processing they require. In both cases, the fundamental trade-off is accu-
racy vs. capacity, that is, the more protection against noise, the less data the channel can
carry, a trade-off first articulated by Shannon (1949).

Physical infrastructure
Worldwide, the “twisted pair” copper wires deployed for the provision of telephony
represents the most important infrastructural investment for telecommunications pro-
viders, millions of wires that connect individual dwellings to the network, built over the
course of the last century. A defining engineering project of the early 21st century is the
conversion of this “voiceband” infrastructure, limited to the transmission of analog
voice, to a “broadband” infrastructure, i.e., one capable of carrying significant amounts
of digital information. While the physical properties of optical fiber have made it the
preferred material for wireline broadband, the enormous costs of infrastructural de-
ployment to the level of the “last mile” insure that the Internet will continue to operate
over a mixture of physical materials:

“Although many broadband architectures require optical fiber to be brought at least some
of the way towards the home from the exchange, bringing the fiber increasingly closer to
the home become prohibitively expensive. The cost of fiber deployment is dominated not
by the material costs but by the cost of civil works (i.e., the digging of the road/pavement
and the laying of the fiber)—a costs which can range between £25 and in excess of £75 per
metre, depending on the circumstances.” (Czajkowski, 1999, p. 127)

These costs have significant consequences: firstly, like capacity on highways, the re-
source is largely inelastic. Unlike processing power or storage, service providers cannot
lay additional cables on demand, and thus, must meet future demand through over-
provisioning. The widespread adoption of this strategy by telcos at the height of the
dot-com era resulted in vast amounts of “dark fiber,” i.e., unused capacity; secondly,
the economies of scale and density that characterize such network infrastructures will
continue to offer low incentives for telecommunication providers to update their infra-
structure in rural areas; thirdly, telcos have been highly motivated to fund research for
the development of encoding and multiplexing schemes that maximizes the amount of
bits that could be transmitted over the existing infrastructure (e.g., DSL over twisted
pairs). These issues are not limited to wireline communication: much of the wireless
(cellular) infrastructure was similarly developed for voice traffic and thus required ex-
tensive investments from telcos to handle broadband.

Sharing
As with other point-to-point networks (e.g., telephone, mail, or road system), it is not
feasible or cost-effective to establish direct links between every computing device. In-
stead, multilevel hierarchies of communication links are used, whereby individual links
connect to hubs (switchboards, mail sorting centers, highway interchanges, airports),
themselves connected to each other through shared, high-capacity links. A central de-
sign imperative of network stack is thus the efficient use of shared and scarce commu-

 21

nication links, given various characteristics of traffic: peak/off-peak demand, data vs.
voice, quality of service requirements, shape, etc.

A defining characteristic of the Internet is its reliance on packet switching to maximize
limited network resources: first, in the context of computer-generated “bursty traf-
fic,”exhibiting substantial variations in intensity, breaking down communications in
small packets helps evenly spread usage of a communication link among multiple users
competing for the resource; secondly, depending on network topology, packet switch-
ing can help alleviate congestion by moving traffic towards less congested links; finally,
the network can adapt in real-time to significant changes in topology. Yet, as imple-
mented in the TCP/IP protocols, packet switching entails significant drawbacks: no
minimum latency may be guaranteed, a significant issue for applications such as
streaming media or telephony.

Cross-layer design

The network stack differs significantly from the processor and storage stack, insofar as
it is the only case involving the a-priori definition of the modular decomposition of the
stack and its imposition through standardization (Abbate, 2000; Zimmermann, 1980).
For our purposes, the main elements are as follow: in the 1970s, with several experi-
ments under way (including Arpanet), the merging of computing and telecommunica-
tions was already on the horizon. In 1978, ISO proposed an overall layering framework
for networking technologies, that is a certain modular decomposition of the network
stack. The OSI (for Open Systems Interconnection) model specified how a set of net-
working protocols should fit together to form a complete system, in effect, a meta-
standard that incorporated other standards, and specified their interaction. The model
listed seven layers to manage the movement of bits from physical media to applications
and back: physical, link, network, transport, session, presentation, application. Each
layer would provide for different types of services (e.g., network provides routing,
transport provides reliable delivery), and for each layer, multiple standards could be
specified.

The mixed successes of OSI and of its top-down design through large standardization
bodies have often been contrasted with the nimble political structures that characterize
Internet governance (Russell, 2006). Yet, as Dave Clark, former chair of the Internet Ar-
chitecture Board, explains, the benefits of modularity themselves remain unquestioned:

 “All good computer scientists worship the god of modularity, since modularity brings
many benefits, including the all-powerful benefit of not having to understand all parts of
a problem at the same time in order to solve it. … The field of network protocols is per-
haps unique in that the ‘proper’ modularity has been handed down to us in the form of
an international standard: the seven-layer reference model of network protocols from the
ISO.” (Clark, 1996)

However, this ‘proper’ modularity is currently under stress, as it must adapt to the
emergence of a new material basis for networking, that of wireless communication.
Along with the dazzling possibilities of mobile computing comes significant engineer-

 22

ing challenges: a much larger range of channel conditions, new source of interference,
and devices that move more or less randomly through the network infrastructure. And
just like the case for wireline communications, the infrastructure for wireless communi-
cations must be updated to account for the changing nature of the data it carries—from
analog voice to digital data. The wireless infrastructure must account for the wide range
of applications pushing and pulling the data through the radio spectrum, all with dif-
ferent Quality of Service (QoS) needs, that is, with different degree of sensitivity to la-
tency: “Emerging networks must support various and changing traffic types with their
associated Quality-of-Service requirements as well as networks that may have changing
topologies. The problem of various traffic types is typified in newly defined 3G net-
works. These networks must support multimedia traffic with manifold delay, error-rate,
and bandwidth needs.” (Rappaport, Annamalai, Buehrer & Tranter, 2002, p. 158) Yet
another emerging wireless infrastructure, that of sensor networks, must compose with
the very low power consumption requirements of minuscule wireless devices.

Thus, the very different nature of the physical layer, along with the very different needs
which wireless media must satisfy, have led to persistent calls for what amounts to the
ultimate taboo in network architecture, breaching the independence of the OSI layers
through “cross-layer design”:

“In order to meet the challenges of ubiquitous wireless access, network functions (.e., the
various OSI layers) must be considered together when designing the network. QoS re-
quirements that can and will vary according to application will force the network layer to
account for the physical-layer design when optimizing network throughput. Further, dif-
ferent applications are better served by different optimizations. This leads to a design
methodology that blurs the lines between layers and attempts to optimize across layer
functionality.” (Rappaport et al., 2002, p. 159)

Unsurprisingly, from the onset, proposals for cross-layer design have raised no small
amount of controversy. The first issue is, quite simply, that modularity has proven such
an successful design strategy in computing precisely because it circumscribes the range
of interactions between modules (layers). Cross-layer optimization is not different to
using “goto” statements, as Kawadia & Kumar (2005) argue, “Does one then get un-
structured spaghetti-like code that is hard to maintain?” The wonderful benefits of
breaking down complex systems into smaller, more manageable, parts are no longer
available:

“Once the layering is broken, the luxury of designing a protocol in isolation is lost, and
the effect of any single design choice on the whole system needs to be considered. …
Compounding this is the fact that some interactions are not easily foreseen. Cross-layer
design can thus potentially work at cross-purposes; the ‘law of unintended consequences’
can take over if one is not careful, and a negative effect on system performance is possi-
ble.” (Kawadia & Kumar, 2005, pp. 3-4)

This is not simply a hypothetical situation: Kawadia and Kumar are able to exhibit sev-
eral examples where proposed cross-layer designs of the MAC and physical layer
would result in undesirable interactions with the network layer, resulting in net per-

 23

formance losses under certain conditions. Furthermore, the argument that cross-layer
design will improve performance thus very much depends on what dimension of per-
formance is emphasized. As they underline, this is always the fundamental trade-off of
modular design:

“On the other hand, taking an architectural shortcut can often lead to a performance gain.
Thus, there is always a fundamental tension between performance and architecture, an
temptation to violate the architecture. However, architecture can and should be regarded
as performance optimization, although over a longer time horizon. An architecture that
allows massive proliferation can lead to very low per-unit cost for a given performance.
More properly, therefore, the tension can be ascribed to realizing short-term vs. longer-
term gain. In the particular case of wireless networks, which may be on the cusp of mas-
sive proliferation, our contention is that the longer-term view of architecture is para-
mount.” (Kawadia & Kumar, 2005, p. 4)

That is, layering enables stable forms of market segmentation (and the resulting econo-
mies of scale) to take hold, and thus, the “very low per-unit cost” that has been a major
element of the success of the telecommunication industry. Thus, while the rationale for
cross-layer design is understandable given the new material basis of wireless communi-
cations, it is a recipe for economic (and political) instability, at a particularly sensitive
time: “it well behooves us to adopt a cautionary approach to cross-layer design at a
critical time in the history of wireless networks when they may well be on the cusp of
massive proliferation that is the objective of us all.” (Kawadia & Kumar, 2005, p. 11)

8. Discussion

The preceding historical analysis of the evolution of the three resource stacks demon-
strates that the materiality of digital information can be understood as the composition
of two different sets of constraints: those due to the physical characteristics of the lim-
ited resources of computation; and those due to the adoption of modularity as a means
of mediating between these resources and the applications that manipulate this infor-
mation. At their most fundamental, each of these resources deals with bits as physical
quantities, whether magnetic polarities, electric voltages, or radio waves. These physical
quantities are first abstracted as bits, and circulated up and down the resource stacks,
the layered chains of modules that obtain between applications and resources.

The magic of modularity, its ability to decouple functional specification from imple-
mentation, provides enormous freedom and flexibility to the management, coordina-
tion, and evolution of complex technical systems. It provides programmers with stable
interfaces to system resources in the face of continuously evolving hardware. However,
in abstracting from the noise that different materials bring to the digital abstraction,
from specific implementations of physical resources, from their distribution in space,
and from their sharing among multiple users, such decoupling necessarily involve effi-
ciency trade-offs.

These trade-offs must be continuously negotiated with respect to the fundamental drive
of systems design, maximizing the use of systems resources in service of greater effi-

 24

ciency. In particular, this drive continuously works to undermine the freedom afforded
by modular decomposition, for example, through attempts at co-design of independent
layers. Furthermore, changes to the material resources of computing (e.g., wireline to
wireless) necessarily ripple through the layers of the stacks, requiring renegotiation of
previously established trade-offs, either through the market or the standardization
process (5). The computing infrastructure thus evolves through the conflicting pres-
sures of forces that encourage a certain kind of persistence, and those that make possible
certain kinds of moves.

Persistence

Several characteristics of modularity act as conservative forces against evolving mate-
rial basis of computing. The chief force is inherent to modular decomposition: while it
provides for flexible decoupling of abstractions from implementations, the modular de-
composition itself is extremely rigid, since any change involves redefining the relationship
of a minimum of two layers. Parkas (1984) foresaw as much, when he suggested that
“only very unlikely changes should require changes in the interfaces of widely used
modules.”

Furthermore, particular modular decompositions become embodied in the hardware,
software, and institutional infrastructure (e.g., standards, technical training) of comput-
ing. Such materialization of particular abstractions provides the long-term stability nec-
essary for economies of scale to take hold. It is such economic advantages that have en-
abled von Neumann machines to provide the best processing power/cost ratio for the
last 60 years—the closest we have to eternity in the world of computing. Emergent
forms of materiality threaten existing architectures with economic instability, as
stakeholders seek adjustments to the stack to improve its efficiency in favorable ways
(e.g., cross-layer design). At the same time, the high costs of infrastructural investments
ensure that computing resources are repurposed rather than merely replaced. The re-
source stacks must thus compose with different types of materials (parallel and non
parallel architectures, twisted pair and fiber, local and remote storage) with resulting
trade-offs and inefficiencies. Thus, the solutions developed in a particular moment of
technical history tend to persist and accrete.

Thus, in contrast to the perception of computing as moving at a furious pace of techni-
cal evolution, its infrastructure evolves very slowly. Because of the need to maintain
backward compatibility, the incorporation of major changes in the material basis of
computing — e.g. multi-core processing, cloud-based, and wireless computing — pro-
ceeds conservatively through mutation and hybridization, rather than outright break
with the past. For example, rather than reinvent the abstractions that govern processing
to take advantage of the new possibilities offered by server farms, Amazon’s EC2 cloud
service reproduces virtual von Neumann architectures, so that consumers can run exist-
ing applications and commercial software

Moves

In spite of these conservative forces, the resource stacks are in a constant state of (more

 25

or less pronounced) flux. The fundamental pressure for change is exerted by the drive
for greater efficiency. While we are familiar with efficiency as achieved by material sci-
ence (greater storage density, greater communication speed, greater clocking speed),
less familiar are the kind of moves within the stack that also result in efficiency gains.

The most common strategy is to breach the independence of two adjacent layers
through co-design, as illustrated above (co-design of processors and programming lan-
guage abstractions, Google’s co-design of GFS and MapReduce, cross-layer design for
wireless networks). Another move, encapsulation, consists in wrapping the interface of a
module into another layer—e.g., Google’s GFS and the UNIX file system. Because it re-
uses the existing file system interface, the GFS will also inherit all of its built-in ineffi-
ciencies. These are compensated however by the benefits of increased elasticity of the
resource, low costs of the components, and co-design of the file and application layer.
Inserting new layers in the stack can prove extremely difficult. For the last quarter of a
century, the computer science community has attempted, with limited success, to define
a standard for a layer (CORBA) that would enable applications to transparently com-
municate with other applications and enable more distributed forms of processing
(Henning, 2006).

The most powerful move remains the imposition of an a-priori modular decomposition
before protocols solidify in both hardware and institutions, as attempted by ISO with
the OSI model. But the OSI model already conflicted with another architecture, that of
TCP/IP, illustrating that when it comes to infrastructure, there is no such thing as a
clean slate. The clean slate is precisely what computer scientists often fantasize about
when faced with infrastructural change: “Given an excuse to reinvent the whole soft-
ware/hardware stack, this opportunity is also a once-in-a career chance to fix other
weaknesses in computing that have accumulated over the decades like barnacles on the
hull of an old ship.” (Asanovic et al., 2009, p. 3) Yet, as Ciborra (2000; 2002), Star & Ru-
hleder (1996) and the preceding sections have suggested, infrastructural change pro-
ceeds just as much through improvisation, bricolage, and drift, than it does through
planification and control.

These moves, this persistence provide essential analytical tools for strategic planning,
for understanding the complex positioning of market players through vertical and hori-
zontal integration, standards, and interoperability. This particularly true at this moment
in technical history, as networks migrate towards architectures where fundamental
computing resources—processing, storage, communication—are extensively distributed
and shared, and their power leveraged for an ever-increasing range of societal func-
tions.

9. Conclusion

What kind of work does a theory of digital materiality perform? One can envision the
difficulties that would arise in attempting to account for architecture without a working
concept of the tensile strength of steel, of the durability of concrete, of the density of
wood. Indeed, that these materials differ in their physical characteristics registers on the

 26

entire ecology of the field, from construction methods to economics, design traditions,
professional training, cultural symbolism, etc., and no meaningful analysis can ignore
these differences. Furthermore, there exist both a precise technical understanding of
these differences, appropriate to the expert communities concerned with these issues,
and a lay intuition that informs everyday discourse. Yet, we today have neither techni-
cal language nor intuition for something akin to the tensility, durability, or density of
computing resources. Without a basic understanding of the material constraints under
which computing systems operate, essential dynamics that animate the built environ-
ment of the virtual will remain invisible and unaccounted for.

Furthermore, a fundamental shift in the contemporary social sciences has been to in-
creasingly ground cognition, identity, subjectivity, and collective action in the body and
its material environment, rather than solely in the brain (Malafouris & Renfrew, 2010).
The Cartesian heritage of philosophies of mind has made it difficult to account for the
fact that “as embodied agents, able to move and act in a persisting material world, we
are demonstrably able to profit from a variety of strategies that make the most of bio-
external sources of order and information.” (Clark, 2010, p. 23) Such a perspective
yields powerful insights: in STS for example, Donald MacKenzie (2006) has famously
argued how financial models (e.g., Black-Scholes option pricing) “perform” markets,
through computerized trading systems, but also through the mundane technology of
paper — “sheets which floors traders could carry around, often tightly wound cylindri-
cally … so that a quick squint would reveal the relevant prices.” Even more the point, in
a perceptive analysis of video codecs, the compression algorithms that power the media
culture of the Internet, Adrian Mackenzie argues the material constraints of computing
intimately register within our very perceptual systems:

“Eyes and ears do not have universal, timeless physiological properties. They have me-
dia-historical habits. Electronically mediated visual culture shapes eyes and ears, and
creates perceptual habits at many levels. For instance, the conventions of the rectangular
4:3 ratio TV screen, the 16:9 ratio cinema screen, the number of scan lines, or the colour
models of PAL/NTSC television broadcasts go deep into visual habits. Sensations of col-
our, texture, brightness and level of detail all feed into habits of viewing. The video
codecs behind DVDs, High Definition Television, mobileTV for 3G cellular telephones,
RealPlayer, or satellite digital video broadcasts attempts to take those expectations into
account and meld them with the limited channel capacities of networks, broadcast spec-
trum or cables.” (Mackenzie, 2010, p. 145)

Indeed, without modes of analysis grounded in the stuff of computing, we shall find
ourselves in the awkward situation of resorting to theories that account for embodied
subjects situated and interacting in environments curiously lacking specific material
constraints.

Conversely, the analysis proposed here provides a picture of computing dramatically at
odds with that conveyed by the trope of immateriality. Indeed, it is only recently that
computing has been approached as “something having a history, rather than just being
permanently in a state of improvement” (Fuller, 2008). As Haigh (2009) notes, “software

 27

tools encapsulate craft knowledge, working practices, and cultural assumptions. …these
encapsulated qualities are reproduced with each new software revision, often enduring
for decades.” (p. 7) Indeed, this paper has shown how abstractions, embedded in soft-
ware, hardware, and institutions, endure across decades, acting as conservative forces
on infrastructure evolution. Yet, much of the historical dialectic between abstraction
and implementation is absent from computer scientists’ own accounts of their disci-
pline. As Blaauw and Brooks (1997) remark in their monumental study of computer ar-
chitecture, “when reading the professional paper describing the architecture of a new
machine, it is often difficult to discern the real design dilemmas, compromises, and
struggles behind the smooth, after-the-fact description.”

Yet these dilemmas, these compromises, these struggles will increasingly matter, as the
software infrastructure comes to mediate a breathtaking proportion of social relations.
As Miller (2005) notes, objects are important “precisely because we do not ‘see’ them.
The less we are aware of them, the more powerfully they can determine our expecta-
tions by setting the scene and ensuring normative behavior, without being open to chal-
lenge. They determine what takes place to the extent that we are unconscious of their
capacity to do so.” The inability for a technical field to retrace the historical path of its
most important and durable contributions has important consequences for its ability to
critically reflect on its own evolution and the political work inherent in infrastructural
design. (6)

The need for such critical reflection is particularly timely at this juncture in the evolu-
tion of computing. The current move towards mobile and cloud computing will intro-
duce fundamentally new economic mechanisms for the valuation of the material re-
sources of computing (7). In turn, the allocation, distribution, and metering of these re-
sources, and the design of the infrastructure that mediates them will become an increas-
ingly visible and contested phenomena. The analytical framework in this paper provide
means to make the infrastructural work of computing more visible, so that it may be
engaged with by a broader range of stakeholders.

Acknowledgements

I would like to dedicate this article to the late Susan Leigh Star, whose pioneering work
on infrastructure inspired and informed this project. I would like to thank Johanna
Drucker, Jonathan Furner, and Annette Weisser for their insightful feedback, support,
and sharing of ideas, as well as two anonymous reviewers for their valuable comments.
I would especially like to thank the students of “IS 270: Introduction to Information
Technologies,” whose questions, concerns, and efforts provided the opportunity to de-
velop much of this material.

Notes

(1) One should note that the assignment of functional elements to artifacts is far from a
well-defined issue — see Preston (1998; 2000).

 28

(2) This very trade-off was at the heart of the design of the most widespread modular
structure in the world — the shipping container. See Levinson (2006), in particular
chapter 7, “Setting the Standard.”

(3) In fact, the most efficient garbage collection algorithms are referred to as “stop the
world” algorithms, as they require the executing program to stop altogether during the
memory reclamation process, leading to an “embarrassing pause” (Henriksson, 1998).

(4) See also Hopper and Mauchly (1953) for an early argument for co-design of hard-
ware and programming languages.

(5) An excellent account of the techno-politics of standardization is von Burg (2001).

(6) The movement of “software patterns” is one attempt to capture what currently gets
lost in the current dominant style of technical accounts. See (Buschmann, Henney &
Schmidt, 2007).

(7) See for example Amazon’s spot market for its EC2 cloud computing service —
http://aws.amazon.com/ec2/spot-instances

References

Abbate, J. (2000). Inventing the internet. The MIT Press.

Abelson, H., Ledeen, K., & Lewis, H. R. (2008). Blown to bits : Your life, liberty, and happi-
ness after the digital explosion. Upper Saddle River, NJ: Addison-Wesley.

Agre, P. (1997). Computation and human experience. Cambridge ; New York: Cambridge
University Press.

Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., et al.
(2009). A view of the parallel computing landscape. Commun ACM, 52(10), 56-67.

Barlow, J. P. (1996). A declaration of the independence of cyberspace [Web page].

Blaauw, G. A. & Brooks, B. F. (1997). Computer architecture : Concepts and evolution. Read-
ing, Mass.: Addison-Wesley.

Blanchette, J. F. (2011). The noise in the archive: Oblivion in the age of total recall. In
Gutwirth, Poullet, De Hert, & Leenes, (Eds.), Privacy and data protection: An element of
choice. Heidelberg: Springer.

Buchholz, W. (1963). File organization and addressing. IBM Systems Journal, 2(2), 86-111.

Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Pattern-Oriented software architec-
ture: On patterns and pattern languages. John Wiley & Sons Inc.

Campbell-Kelly, M. (1990). Punched-Card machinery. In W. Aspray (Ed.), Computing
before computers. Iowa State University Press.

Ceruzzi, P. E. (2003). A history of modern computing. The MIT press.

 29

Ciborra, C. (2000). From control to drift: The dynamics of corporate information infastructures.
Oxford University Press, USA.

Ciborra, C. (2002). The labyrinths of information: Challenging the wisdom of systems. Oxford
University Press, USA.

Clark, A. (2010). Material surrogacy and the supernatural: Reflections on the role of ar-
tefacts in 'off-line' cognition. In L. Malafouris & C. Renfrew (Eds.), The cognitive life of
things: Recasting the boundaries of the mind. (pp. 23-37). Cambridge, U.K.: McDonald Insti-
tute for Archeological Research.

Clark, D. (1996). Foreword. In Computer networks : A systems approach. San Francisco,
Calif.: Morgan Kaufmann.

Czajkowski, I. K. (1999). High-Speed copper access: A tutorial overview. Electronics &
Communication Engineering Journal, 11(3), 125-148.

Daley, R. C. & Neumann, P. G. (1965). A general-purpose file system for secondary
storage. In AFIPS '65 (fall, part I): Proceedings of the november 30-december 1, 1965, joint
computer conference. ACM.

Dean, J. & Ghemawat, S. (2008). Mapreduce: Simplified data processing on large clus-
ters. Communications of the ACM, 51(1), 107-113.

Eckert, J. P. (1953). A survey of digital computer memory systems. Proceedings of the IRE,
41(10), 1393-1406.

Engler, D. R. & Kaashoek, M. F. (1995). Exterminate all operating systems abstractions.
Proceedings of the Fifth Workshop on Hot Topics in Operating Systems (Hotos-V), 78.

Fuller, M. (2008). Software studies: A lexicon. Cambridge, Mass.: The MIT Press.

Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The google file system. ACM SIGOPS
Operating Systems Review, 37(5), 43.

Gibson, W. (1984). Neuromancer. New York: Ace Books.

Haigh, T. (2009). How data got its base: Information storage software in the 1950s and
1960s. IEEE Annals of the History of Computing, 6-25.

Hayles, N. K. (1999). How we became posthuman : Virtual bodies in cybernetics, literature,
and informatics. Chicago, Ill.: University of Chicago Press.

Hayles, N. K. (2002). Writing machines. Cambridge, Mass.: MIT Press.

Henning, M. (2006). The rise and fall of CORBA. Queue, 4(5), 34.

Henriksson (1998). Scheduling garbage collection in embedded systems. PhD, Lund Univer-
sity.

Hillis (1999). The pattern on the stone: The simple ideas that make computers work. New York:
Basic Books.

 30

Hopper, G. M. & Mauchly, J. W. (1953). Influence of programming techniques on the
design of computers. Proceedings of the IRE, 41(10), 1250-1254.

Kawadia, V. & Kumar, P. R. (2005). A cautionary perspective on cross-layer design.
IEEE Wireless Communications, 12(1), 3-11.

Kirschenbaum, M. G. (2008). Mechanisms : New media and the forensic imagination. Cam-
bridge, Mass.: MIT Press.

Knoespel, K. & Zhu,, J. (2008). Continuous materiality through a hierarchy of computa-
tional code. Théorie, Littérature, Epistémologie, 25, 235-247.

Leonardi (2010). Digital materiality? How artifacts without matter, matter. First Monday,
15(6-7).

Levinson, M. (2006). The box: How the shipping container made the world smaller and the
world economy bigger. Princeton Univ Pr.

Mackenzie, A. (2010). Every thing thinks: Sub-Representative differences in digital
video codecs. In C. B. Jensen & K. Rödje (Eds.), Deleuzian intersections: Science, technology,
anthropology. (pp. 139-62). New York and Oxford: Berghahn Books.

MacKenzie, D. A. (2006). An engine, not a camera: How financial models shape markets.
Cambridge, Mass.: The MIT Press.

Malafouris, L. & Renfrew, C. (Eds.) (2010). The cognitive life of things: Recasting the
boundaries of the mind. Cambridge, U.K.: McDonald Institute for Archeological Research.

Manovich, L. (2007). The language of new media (8 ed.). MIT Press.

May, T. C. & Woods, M. H. (1979). Alpha-Particle-Induced soft errors in dynamic
memories. IEEE Transactions on Electron Devices, 26, 2-9.

Mayer-Scho!nberger, V. (2009). Delete : The virtue of forgetting in the digital age. Prince-
ton: Princeton University Press.

McGee (1959). Generalization: Key to successful electronic data processing. Journal of the
ACM, 6(1), 1-23.

McKenzie, D. F. ([1986] 1999). Bibliography and the sociology of texts. Cambridge, U.K. ;
New York: Cambridge University Press. (Original work published 1985)

McKusick, M. K. & Quinlan, S. (2009). Gfs: Evolution on fast-forward. Queue, 7(7), 10.

McKusick, M. K., Joy, W. N., Leffler, S. J., & Fabry, R. S. (1984). A fast file system for
UNIX. ACM Transactions on Computer Systems (TOCS), 2(3), 181-197.

Miller, D. (Ed.) (2005). Materiality. Durham, NC: Duke University Press.

Miller, D. (2009). Stuff. Polity.

Negroponte, N. (1995). Being digital. New York: Knopf.

 31

Parnas, D. L., Clements, P. C., & Weiss, D. M. (1984). The modular structure of complex
systems. In Proceedings of the 7th international conference on software engineering. (pp. 408-
17). Orlando, Florida, United States: IEEE Press.

Patterson, D. (2010). The trouble with multi-core. IEEE Spectrum, 47(7), 28-32, 53.

Paul, G. (2009). Foundations of digital evidence. Washington: American Bar Association.

Pleszkun, A. R. & Thazhuthaveetil, M. J. (1987). The architecture of lisp machines. Com-
puter, 20(3), 35-44.

Preston, B. (1998). Why is a wing like a spoon? A pluralist theory of function. The Journal
of Philosophy, 95(5), 215-254.

Preston, B. (2000). The functions of things, a philosophical perspective on material cul-
ture. In P. Graves-Brown (Ed.), Matter, materiality and modern culture. (pp. 22-49). Rout-
ledge.

Radin, G. (1983). The 801 minicomputer. IBM Journa of Research and Development, 27(3),
237-246.

Rappaport, T. S., Annamalai, A., Buehrer, R. M., & Tranter, W. H. (2002). Wireless
communications: Past events and a future perspective. IEEE Communications Magazine,
40(5), 148-161.

Ritchie, D. M. & Thompson, K. (1974). The UNIX time-sharing system. Communications
of the ACM, 17(7), 365-375.

Rosenheim, S. (1997). The cryptographic imagination : Secret writing from edgar poe to the
internet. Baltimore, Md.: Johns Hopkins University Press.

Russell, A. L. (2006). 'Rough consensus and running code' and the internet-osi standards
war. IEEE Annals of the History of Computing, 28(3), 48-61.

Sethi, R. (1996). Programming languages : Concepts and constructs. Reading, Mass.:
Addison-Wesley.

Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE,
37(1), 10-21.

Snyder, R. L. (1952). Devices for transporting the recording media. In 1952 proceedings of
the review of input and output equipment used in computer systems.

Star, S. L. & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: Problems of
design and access in large information systems. Information Systems Research, 7, 111-134.

Ulrich (2007). The architecture of artifacts. In Design: Creation of artifacts in society.
http://www.ulrichbooks.org.

Ungar, D., Blau, R., Foley, P., Samples, D., & Patterson, D. (1984). Architecture of SOAR:
Smalltalk on a RISC. In Proceedings of the 11th annual international symposium on computer
architecture.

 32

Von Burg, U. (2001). The triumph of ethernet: Technological communities and the battle for the
LAN standard. Stanford: Stanford Business Books.

Warner, J. (2009). Materializing communication concepts: Linearity and surface in lin-
guistics and information theory. In P. Turner, S. Turner, & E. Davenport (Eds.), Explora-
tion of space, technology, and spatiality: Interdisciplinary perspectives. (pp. 196-213). Hershey
and New York: Information Science Reference.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Yates, J. A. (2005). Structuring the information age: Life insurance and technology in the twen-
tieth century. Johns Hopkins University Press.

Zimmermann, H. (1980). OSI reference model--the ISO model of architecture for open
systems interconnection. Communications, IEEE Transactions on [Legacy, Pre-1988], 28(4),
425-432.

Zittrain, J. (2009). The future of the internet--and how to stop it. New Haven: Yale Univer-
sity Press.

